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PROBLEM 1.

a)

b)

H(AB) + H(BC) = H(B) + H(A|B) + H(BC)
> H(B)+ H(A|BC) + H(BC)
= H(B) + H(ABC).
Choose B = XSmT, A= XS\Ta C = XT\S' Then
H(AB) = H(Xs), H(BC)=H(Xy), H(ABC)= H(Xsur).

Direct application of (a) yields the result.

In the hint, it is given that the left-hand side is the average of H(X;,,,|X,,,...,X;,)
over all permutations (iq,...,4,) of (1,...,n). Observe
H(Xik+1|Xi2, X ) =H(X,,, .. sz,szH) H(X:y, ..., X))
and
1
H Z H<Xik+1‘Xi2>' .- ?Xik)
(i1yesin)€m(L,...0)
1 1
== > H (X Xiy Xiy) = — > H(Xiy,. .., X5
" (#1yeenin) €T (L, ,m) " (i1yemyin )€ (1,yn)

Consider the first sum 4 > H(X,,,...,X;,, X;,,,). Note that for any set S C
{1,...,n} with |S| =k, H(Xg) is counted (n — k)!k! times in the above sum. There-
fore,
w > H(Xiy, oy Xy Xip 1) = ( Yy H(Xs)=
(i1, yin)€T(1,...,0) S:|S|=k
Likewise, we have & > H(X,,,...,X;,) = Hj_; for the second sum. With a similar
reasoning, we see that the right-hand side is the average of H(X;, . ,|Xi,,..., X, ) over

ik+1|

all permutations (i, ...,4,) of (1,...,n).
Since
H(X;,,,| X)) > H(X, X, XG)
we obtain
% > H(Xip | Xy ooy Xiy) > % > H(Xi | X0 Xi)
(i1ye-sin)€T(L,...0) (i15e-sin)€T(L,...0)

which is equivalent to
Hy — Hy_1 > Hyyy — Hy.



d) Let ay := Hy — Hy_1. Using the hint, we obtain

k= k+1 k+1 14 :
i.e., averages of (a;)%, and (a;)"t! respectively. From part (c) we know that the
sequence (ay) is non-increasing, which implies ax1 < a; for all i = 1,... k. It is

known the average of the sequence (a;)F} is smaller than the average of (a;)f_; if
aj+1 is smaller than every other term in the sequence. This proves the statement.

If the above fact is not obvious, one can proceed with

k+1

Hy  Hepno 1 1 }
k k41 kzz k—H;a

_ Zle a; — ka4
k(k + 1)

_ Yl —an) 0
k(k+1) -




PROBLEM 2.

(a)

()

Observe that H(ZW) < H(Z}) < H(Z},W). We also have
1
H(ZYW) = 5 (H(Z}[W = 0) + H(Z{|W = 1) + H(Z{|W =2))
1 n
=-H(Z'W =2) = —.
SHZW =2) =

and

H(zy, W) = H(ZT|W) + H(W)

:g+log3.

Taking the limit for both upper and lower bounds, we obtain
1 1

lim —H(Z}'|W) <lim —H(Z}") <lim —H(Z}", W)
n n n n n

li

IN

=
SI—3 |+~

H(Z7) <

W =
3
W =

Therefore, lim,, + H(Z]) = 3.

I(X™Y") = HY") — HY"X") = HY") — H(Z"). Note that H(Y") < n and
equality holds if and only if V;s are independently and uniformly distributed. This is
attained when X;s are also independently and uniformly distributed. We now verify
this claim.

— If W =0or W =1, the noise Z7 is fixed and Y}" = X7 + 0" or Y" = X[" + 1".
One can see that Y;s are independently and uniformly distributed if X;s are also
independently and uniformly distributed.

— If W = 2, then Z;s are i.i.d. and the output Y;* will be independently and
uniformly distributed and will also be independent of the input X7'.

Therefore px (X} = a7) = 55, for all 27 = {0, 1}" maximizes I(X";Y™). In this case,

C,=1-H(Z")/n.

Using part (a), we have lim,, C,, = 1 — lim,, H(Z")/n = 2.

Suppose we have two codewords as we want to send one bit of information. When
W = 2, the output is independent of the input. Therefore, the receiver cannot do

better than choosing one of the codewords randomly, which implies that the error

probability is 1. Since W = 2 with probability %, we see that the error probability

2
for any code is greater than %.

The capacity is zero as the error probability cannot be made arbitrarily small.



PROBLEM 3.

a)

Consider any code C with |C| = 2"% and error probability p.. Taking the hint, we
will need to show that :

1) There is a k such that |Cyx| > 2"%/(n + 1), which implies that log |Cy|/n = R’ >
R — w. This is due to the fact that we have 2% codewords and (n + 1)
possible value of k, i.e., k € {0,1,...,n}. Hence it is justified by the pigeonhole
principle.

You can also prove this by contradiction. If for all k& we have |Cy| < 2"/(n+1),
then |C| = Y, |Ck| < 2"%. This contradicts the fact that |C| = 2"%.

2) For any k, we define U, = {u € U : enc(u) € Cy}. Therefore

pl, = max W"(dec(Y™) # u| X" = enc(u)) < max W"(dec(Y") # ul X" = enc(u)) = p.
UE

¢ uEU,

where the inequality is because we optimize over a subset of U.

Now, for every R < C, take n large enough such that R + log(n + 1)/n < C. As
we have discussed in class, there exists a code C with rate R + log(n + 1)/n with
arbitrarily small error probability p.. As we have proved in 1) and 2), there exists
a constant-weight subset of C, i.e. C;, with rate R and smaller error probability pl.
This implies that there exists a rate-achieving constant-weight code.

Consider any codewords 2™ € C and any possible channel output 3". For BSC(p), we
have

W(Yn = yn|Xn = xn) = pz?:l ]l{xﬁéyZ}(l _ p)Z:L:1 ]1{%:3/2'}.
For 0 < p < 1, this probability is always positive. Hence, any pair of codewords
and channel output is compatible and the decoder always return 7. This implies that

Ceo = 0.
For p = 0 or p = 1, for any 2", there is only one y" such that this probability is
positive. Hence the decoder always return a correct guess and the capacity C., = 1.

As the channel is BEC, it cannot flip bits on the channel inputs. Furthermore, as we
know that y” contains j erasures and the channel is i.i.d., then the probability of this
event happens is p?(1 — p)" 7 if 2™ is compatible with y". Hence

0 Ji,y; #7 and y; # @

( y"| z") {p’(l —p)"7  otherwise

By Bayes’ rule, we have

nymn — n — P — n(yn — n —
br( —alyn — gy — W= =P U =) W =yrfU =
Douer WY =y U =u) Pr(U =u) 3,y WHY™ =y |U = u)
where the last inequality is due to U is distributed uniformly. From ¢, we know that

any =" which compatible with y™ has a similar W™ (Y™ = y"|U = u) value. Therefore
we have

1
[{z" € C : ™ is compatible with y"}

1
PH(U = ulY™ = y) = <
where the last inequality is due to the fact that T'(y") > 2.

4



e) Consider the following,

= Pr(U #U)

=N P AUY =)+ Y PO AUY =g+ Y P AUY" =y
y"EB y™ T (ym)=1 y™:T(y™)=0
y"eB

this is due to the fact y" : T'(y") = 1 is always decoded correctly and y™ : T'(y") = 0
has W"(Y"™ = y"|X™ = 2™) = 0 as we have shown in c¢). This implies

Pr(U #U) = Z (1=Pr(U=UY"=y")PY" =y")
y"eB
Iy
yneB
_ %p(yn € B)

f) From e), we can deduce that dece,(y") =7 iff y* € B. Hence P(dec.,(Y") # U) <
2P(U # U). This implies that C.(W) > C(W) for BEC, because if there exists a
code with vanishing p. then there exists codes with vanishing pe,.

Now, consider our expansion from e)

pe=Pr(U#U)=> (1-Pr(U=UN"=y"))PY"=¢y") < > PY" =y") = pec.
y*eB y"EB

In other words, if there exists a codes with vanishing p,., then there exist a code with

vanishing p.. This implies that C.,(W) < C(W) for BEC.

Hence, C.,(W) = C(W) for BEC.



PROBLEM 4.

a) Consider codewords which achieves minimal distance enc(a) and enc(b), define the
sets Agp = {k 26 = 1,25, =0}, By ={k 1 2, = xj;, = 1}and Cpp = {k 2 =
0,2, = 1}. As the code is constant-weight, we have |Ag| + |Ba| = |Bap| + |Can| = &
which implies

d = |Ag| + |Cap| = 2k — 2| By

Hence, d must be an even number, as it is equal to an even number minus an even
number.

A constant-weight code cannot be linear, because linear codes must contain all zero
vectors with weight 0. But we define k£ > 0. Hence contradiction.

b) For any pair of distinct codewords enc(a) and enc(b), define Aup,Bap,Cop as in a).
Consider the following equality

- Aab + Cab
Zma,jfb,j = |Bu| =k — %
j=1

As it must hold for every a # b then

n

A+ [Coee d
E TqjTp; < k— min [Aa-s 2| arh :k_ﬁ'
g a*,b*,a*#b

¢) This is a consequence of the Cauchy-Schwartz inequality
(Sout) <X ury 13t
j=1 j=1  j=1 j=1

this implies

EM? 1 (O g
SHOEIE o
n n
=1 j=1

d) We have

n

202
ki/[ SZ Z Za,jTp,j

Jj=1 a,be[m]

n n
= E : E o Ty + E : E TajTyj

a#b j=1 a=b j=1

gZ(k—g)+;k

a#b

where the first term is due to b) and the second term is due to its a k constant-weight
code. This implies

2M2
K §M(M—1)(I<;—C—Z>+Mk:
n 2
which is equivalent to
k2 M d
—k<(M-1) <k:——).
n 2

6



e) Plugging the number, we have

IRV

which implies
27 6
M< —=34+—
-7 + 7

as M must be integer, then M* < 3.

Consider the following instance of (9,6,4) code {111100000,000111100, 100000111}
This implies that M* > 3.

Hence M* = 3.



