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Problem 1.

a)

H(AB) + H(BC) = H(B) + H(A|B) + H(BC)

≥ H(B) + H(A|BC) + H(BC)

= H(B) + H(ABC).

b) Choose B = XS∩T , A = XS\T , C = XT \S . Then

H(AB) = H(XS), H(BC) = H(XT ), H(ABC) = H(XS∪T ).

Direct application of (a) yields the result.

c) In the hint, it is given that the left-hand side is the average of H(Xik+1
|Xi2 , . . . , Xik)

over all permutations (i1, . . . , in) of (1, . . . , n). Observe

H(Xik+1
|Xi2 , . . . , Xik) = H(Xi2 , . . . , Xik , Xik+1

)−H(Xi2 , . . . , Xik)

and

1

n!

∑
(i1,...,in)∈π(1,...,n)

H(Xik+1
|Xi2 , . . . , Xik)

=
1

n!

∑
(i1,...,in)∈π(1,...,n)

H(Xi2 , . . . , Xik , Xik+1
)− 1

n!

∑
(i1,...,in)∈π(1,...,n)

H(Xi2 , . . . , Xik).

Consider the first sum 1
n!

∑
H(Xi2 , . . . , Xik , Xik+1

). Note that for any set S ⊂
{1, . . . , n} with |S| = k, H(XS) is counted (n− k)!k! times in the above sum. There-
fore,

1

n!

∑
(i1,...,in)∈π(1,...,n)

H(Xi2 , . . . , Xik , Xik+1
) =

1(
n
k

) ∑
S:|S|=k

H(XS) = Hk.

Likewise, we have 1
n!

∑
H(Xi2 , . . . , Xik) = Hk−1 for the second sum. With a similar

reasoning, we see that the right-hand side is the average of H(Xik+1
|Xi1 , . . . , Xik) over

all permutations (i1, . . . , in) of (1, . . . , n).

Since
H(Xik+1

|Xi2 , . . . , Xik) ≥ H(Xik+1
|Xi1 , . . . , Xik),

we obtain

1

n!

∑
(i1,...,in)∈π(1,...,n)

H(Xik+1
|Xi2 , . . . , Xik) ≥ 1

n!

∑
(i1,...,in)∈π(1,...,n)

H(Xik+1
|Xi1 , . . . , Xik)

which is equivalent to
Hk −Hk−1 ≥ Hk+1 −Hk.



d) Let ak := Hk −Hk−1. Using the hint, we obtain

Hk

k
=

1

k

k∑
i=1

ai,
Hk+1

k + 1
=

1

k + 1

k+1∑
i=1

ai

i.e., averages of (ai)
k
i=1 and (ai)

k+1
i=1 respectively. From part (c) we know that the

sequence (ak) is non-increasing, which implies ak+1 ≤ ai for all i = 1, . . . , k. It is
known the average of the sequence (ai)

k+1
i=1 is smaller than the average of (ai)

k
i=1 if

ak+1 is smaller than every other term in the sequence. This proves the statement.

If the above fact is not obvious, one can proceed with

Hk

k
− Hk+1

k + 1
=

1

k

k∑
i=1

ai −
1

k + 1

k+1∑
i=1

ai

=

∑k
i=1 ai − kak+1

k(k + 1)

=

∑k
i=1(ai − ak+1)

k(k + 1)
≥ 0.
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Problem 2.

(a) Observe that H(Zn
1 |W ) ≤ H(Zn

1 ) ≤ H(Zn
1 ,W ). We also have

H(Zn
1 |W ) =

1

3

(
H(Zn

1 |W = 0) + H(Zn
1 |W = 1) + H(Zn

1 |W = 2)
)

=
1

3
H(Zn

1 |W = 2) =
n

3
.

and

H(Zn
1 ,W ) = H(Zn

1 |W ) + H(W )

=
n

3
+ log 3.

Taking the limit for both upper and lower bounds, we obtain

lim
n

1

n
H(Zn

1 |W ) ≤ lim
n

1

n
H(Zn

1 ) ≤ lim
n

1

n
H(Zn

1 ,W )

1

3
≤ lim

n

1

n
H(Zn

1 ) ≤ 1

3
.

Therefore, limn
1
n
H(Zn

1 ) = 1
3
.

(b) I(Xn;Y n) = H(Y n) − H(Y n|Xn) = H(Y n) − H(Zn). Note that H(Y n) ≤ n and
equality holds if and only if Yis are independently and uniformly distributed. This is
attained when Xis are also independently and uniformly distributed. We now verify
this claim.

– If W = 0 or W = 1, the noise Zn
1 is fixed and Y n

1 = Xn
1 + 0n or Y n

1 = Xn
1 + 1n.

One can see that Yis are independently and uniformly distributed if Xis are also
independently and uniformly distributed.

– If W = 2, then Zis are i.i.d. and the output Y n
1 will be independently and

uniformly distributed and will also be independent of the input Xn
1 .

Therefore pX(Xn
1 = xn1 ) = 1

2n
, for all xn1 = {0, 1}n maximizes I(Xn;Y n). In this case,

Cn = 1−H(Zn)/n.

(c) Using part (a), we have limnCn = 1− limnH(Zn)/n = 2
3
.

(d) Suppose we have two codewords as we want to send one bit of information. When
W = 2, the output is independent of the input. Therefore, the receiver cannot do
better than choosing one of the codewords randomly, which implies that the error
probability is 1

2
. Since W = 2 with probability 1

3
, we see that the error probability

for any code is greater than 1
6
.

(e) The capacity is zero as the error probability cannot be made arbitrarily small.
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Problem 3.

a) Consider any code C with |C| = 2nR and error probability pe. Taking the hint, we
will need to show that :

1) There is a k such that |Ck| ≥ 2nR/(n + 1), which implies that log |Ck|/n = R′ ≥
R − log(n+1)

n
. This is due to the fact that we have 2nR codewords and (n + 1)

possible value of k, i.e., k ∈ {0, 1, . . . , n}. Hence it is justified by the pigeonhole
principle.

You can also prove this by contradiction. If for all k we have |Ck| < 2nR/(n+ 1),
then |C| =

∑
k |Ck| < 2nR. This contradicts the fact that |C| = 2nR.

2) For any k, we define Uk = {u ∈ U : enc(u) ∈ Ck}. Therefore

p′e = max
u∈Uk

W n(dec(Y n) 6= u|Xn = enc(u)) ≤ max
u∈U

W n(dec(Y n) 6= u|Xn = enc(u)) = pe

where the inequality is because we optimize over a subset of U .

Now, for every R < C, take n large enough such that R + log(n + 1)/n < C. As
we have discussed in class, there exists a code C with rate R + log(n + 1)/n with
arbitrarily small error probability pe. As we have proved in 1) and 2), there exists
a constant-weight subset of C, i.e. C ′k, with rate R and smaller error probability p′e.
This implies that there exists a rate-achieving constant-weight code.

b) Consider any codewords xn ∈ C and any possible channel output yn. For BSC(p), we
have

W (Y n = yn|Xn = xn) = p
∑n

i=1 1{xi 6=yi}(1− p)
∑n

i=1 1{xi=yi}.

For 0 < p < 1, this probability is always positive. Hence, any pair of codewords
and channel output is compatible and the decoder always return ?. This implies that
Ceo = 0.

For p = 0 or p = 1, for any xn, there is only one yn such that this probability is
positive. Hence the decoder always return a correct guess and the capacity Ceo = 1.

c) As the channel is BEC, it cannot flip bits on the channel inputs. Furthermore, as we
know that yn contains j erasures and the channel is i.i.d., then the probability of this
event happens is pj(1− p)n−j if xn is compatible with yn. Hence

W n(Y n = yn|Xn = xn) =

{
0 ∃i, yi 6= ? and yi 6= xi

pj(1− p)n−j otherwise

d) By Bayes’ rule, we have

Pr(U = u|Y n = yn) =
W n(Y n = yn|U = u) Pr(U = u)∑
u∈U W n(Y n = yn|U = u) Pr(U = u)

=
W n(Y n = yn|U = u)∑
u∈U W n(Y n = yn|U = u)

where the last inequality is due to U is distributed uniformly. From c, we know that
any xn which compatible with yn has a similar W n(Y n = yn|U = u) value. Therefore
we have

Pr(U = u|Y n = yn) =
1

|{xn ∈ C : xn is compatible with yn}|
≤ 1

2

where the last inequality is due to the fact that T (yn) ≥ 2.
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e) Consider the following,

= Pr(Û 6= U)

=
∑
yn∈B

Pr(Û 6= U, Y n = yn) +
∑

yn:T (yn)=1

Pr(Û 6= U, Y n = yn) +
∑

yn:T (yn)=0

Pr(Û 6= U, Y n = yn)

=
∑
yn∈B

Pr(Û 6= U, Y n = yn)

this is due to the fact yn : T (yn) = 1 is always decoded correctly and yn : T (yn) = 0
has W n(Y n = yn|Xn = xn) = 0 as we have shown in c). This implies

Pr(Û 6= U) =
∑
yn∈B

(
1− Pr(Û = U |Y n = yn)

)
P (Y n = yn)

≥ 1

2

∑
yn∈B

P (Y n = yn)

=
1

2
P (Y n ∈ B)

f) From e), we can deduce that deceo(y
n) =? iff yn ∈ B. Hence P (deceo(Y

n) 6= U) ≤
2P (Û 6= U). This implies that Ceo(W ) ≥ C(W ) for BEC, because if there exists a
code with vanishing pe then there exists codes with vanishing peo.

Now, consider our expansion from e)

pe = Pr(Û 6= U) =
∑
yn∈B

(
1−Pr(Û = U |Y n = yn)

)
P (Y n = yn) ≤

∑
yn∈B

P (Y n = yn) = peo.

In other words, if there exists a codes with vanishing peo then there exist a code with
vanishing pe. This implies that Ceo(W ) ≤ C(W ) for BEC.

Hence, Ceo(W ) = C(W ) for BEC.
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Problem 4.

a) Consider codewords which achieves minimal distance enc(a) and enc(b), define the
sets Aab = {k : xi,k = 1, xj,k = 0}, Bab = {k : xi,k = xj,k = 1},and Cab = {k : xi,k =
0, xj,k = 1}. As the code is constant-weight, we have |Aab|+ |Bab| = |Bab|+ |Cab| = k
which implies

d = |Aab|+ |Cab| = 2k − 2|Bab|
Hence, d must be an even number, as it is equal to an even number minus an even
number.

A constant-weight code cannot be linear, because linear codes must contain all zero
vectors with weight 0. But we define k > 0. Hence contradiction.

b) For any pair of distinct codewords enc(a) and enc(b), define Aab,Bab,Cab as in a).
Consider the following equality

n∑
j=1

xa,jxb,j = |Bab| = k − |Aab|+ |Cab|
2

.

As it must hold for every a 6= b then

n∑
j=1

xa,jxb,j ≤ k − min
a∗,b∗,a∗ 6=b∗

|Aa∗b∗ |+ |Ca∗b∗|
2

= k − d

2
.

c) This is a consequence of the Cauchy-Schwartz inequality(
n∑
j=1

wj1

)
≤

n∑
j=1

w2
j

n∑
j=1

1 = n
n∑
j=1

w2
j .

this implies

k2M2

n
=

1

n

(
n∑
j=1

wj1

)
≤

n∑
j=1

w2
j .

d) We have

k2M2

n
≤

n∑
j=1

∑
a,b∈[m]

xa,jxb,j

=
∑
a6=b

n∑
j=1

xa,jxb,j +
∑
a=b

n∑
j=1

xa,jxb,j

≤
∑
a6=b

(
k − d

2

)
+
∑
a=b

k

where the first term is due to b) and the second term is due to its a k constant-weight
code. This implies

k2M2

n
≤M(M − 1)

(
k − d

2

)
+ Mk

which is equivalent to
k2M

n
− k ≤ (M − 1)

(
k − d

2

)
.
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e) Plugging the number, we have

16M

9
− 4 ≤M − 1

which implies

M ≤ 27

7
= 3 +

6

7

as M must be integer, then M∗ ≤ 3.

Consider the following instance of (9, 6, 4) code {111100000, 000111100, 100000111}.
This implies that M∗ ≥ 3.

Hence M∗ = 3.
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