ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 36
Information Theory and Coding
Final exam solutions

Problem 1.

a)

$$
\begin{aligned}
H(A B)+H(B C) & =H(B)+H(A \mid B)+H(B C) \\
& \geq H(B)+H(A \mid B C)+H(B C) \\
& =H(B)+H(A B C)
\end{aligned}
$$

b) Choose $B=X_{\mathcal{S} \cap \mathcal{T}}, A=X_{\mathcal{S} \backslash \mathcal{T}}, C=X_{\mathcal{T} \backslash \mathcal{S}}$. Then

$$
H(A B)=H\left(X_{\mathcal{S}}\right), \quad H(B C)=H\left(X_{\mathcal{T}}\right), \quad H(A B C)=H\left(X_{\mathcal{S} \cup \mathcal{T}}\right)
$$

Direct application of (a) yields the result.
c) In the hint, it is given that the left-hand side is the average of $H\left(X_{i_{k+1}} \mid X_{i_{2}}, \ldots, X_{i_{k}}\right)$ over all permutations $\left(i_{1}, \ldots, i_{n}\right)$ of $(1, \ldots, n)$. Observe

$$
\begin{gathered}
H\left(X_{i_{k+1}} \mid X_{i_{2}}, \ldots, X_{i_{k}}\right)=H\left(X_{i_{2}}, \ldots, X_{i_{k}}, X_{i_{k+1}}\right)-H\left(X_{i_{2}}, \ldots, X_{i_{k}}\right) \\
\text { and } \\
\frac{1}{n!} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in \pi(1, \ldots, n)} H\left(X_{i_{k+1}} \mid X_{i_{2}}, \ldots, X_{i_{k}}\right) \\
=\frac{1}{n!} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in \pi(1, \ldots, n)} H\left(X_{i_{2}}, \ldots, X_{i_{k}}, X_{i_{k+1}}\right)-\frac{1}{n!} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in \pi(1, \ldots, n)} H\left(X_{i_{2}}, \ldots, X_{i_{k}}\right) .
\end{gathered}
$$

Consider the first sum $\frac{1}{n!} \sum H\left(X_{i_{2}}, \ldots, X_{i_{k}}, X_{i_{k+1}}\right)$. Note that for any set $\mathcal{S} \subset$ $\{1, \ldots, n\}$ with $|\mathcal{S}|=k, H\left(X_{\mathcal{S}}\right)$ is counted $(n-k)!k!$ times in the above sum. Therefore,

$$
\frac{1}{n!} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in \pi(1, \ldots, n)} H\left(X_{i_{2}}, \ldots, X_{i_{k}}, X_{i_{k+1}}\right)=\frac{1}{\binom{n}{k}} \sum_{\mathcal{S}:|\mathcal{S}|=k} H\left(X_{\mathcal{S}}\right)=H_{k}
$$

Likewise, we have $\frac{1}{n!} \sum H\left(X_{i_{2}}, \ldots, X_{i_{k}}\right)=H_{k-1}$ for the second sum. With a similar reasoning, we see that the right-hand side is the average of $H\left(X_{i_{k+1}} \mid X_{i_{1}}, \ldots, X_{i_{k}}\right)$ over all permutations $\left(i_{1}, \ldots, i_{n}\right)$ of $(1, \ldots, n)$.
Since

$$
H\left(X_{i_{k+1}} \mid X_{i_{2}}, \ldots, X_{i_{k}}\right) \geq H\left(X_{i_{k+1}} \mid X_{i_{1}}, \ldots, X_{i_{k}}\right),
$$

we obtain

$$
\frac{1}{n!} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in \pi(1, \ldots, n)} H\left(X_{i_{k+1}} \mid X_{i_{2}}, \ldots, X_{i_{k}}\right) \geq \frac{1}{n!} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in \pi(1, \ldots, n)} H\left(X_{i_{k+1}} \mid X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

which is equivalent to

$$
H_{k}-H_{k-1} \geq H_{k+1}-H_{k}
$$

d) Let $a_{k}:=H_{k}-H_{k-1}$. Using the hint, we obtain

$$
\frac{H_{k}}{k}=\frac{1}{k} \sum_{i=1}^{k} a_{i}, \quad \frac{H_{k+1}}{k+1}=\frac{1}{k+1} \sum_{i=1}^{k+1} a_{i}
$$

i.e., averages of $\left(a_{i}\right)_{i=1}^{k}$ and $\left(a_{i}\right)_{i=1}^{k+1}$ respectively. From part (c) we know that the sequence $\left(a_{k}\right)$ is non-increasing, which implies $a_{k+1} \leq a_{i}$ for all $i=1, \ldots, k$. It is known the average of the sequence $\left(a_{i}\right)_{i=1}^{k+1}$ is smaller than the average of $\left(a_{i}\right)_{i=1}^{k}$ if a_{k+1} is smaller than every other term in the sequence. This proves the statement.

If the above fact is not obvious, one can proceed with

$$
\begin{aligned}
\frac{H_{k}}{k}-\frac{H_{k+1}}{k+1} & =\frac{1}{k} \sum_{i=1}^{k} a_{i}-\frac{1}{k+1} \sum_{i=1}^{k+1} a_{i} \\
& =\frac{\sum_{i=1}^{k} a_{i}-k a_{k+1}}{k(k+1)} \\
& =\frac{\sum_{i=1}^{k}\left(a_{i}-a_{k+1}\right)}{k(k+1)} \geq 0 .
\end{aligned}
$$

Problem 2.

(a) Observe that $H\left(Z_{1}^{n} \mid W\right) \leq H\left(Z_{1}^{n}\right) \leq H\left(Z_{1}^{n}, W\right)$. We also have

$$
\begin{aligned}
H\left(Z_{1}^{n} \mid W\right) & =\frac{1}{3}\left(H\left(Z_{1}^{n} \mid W=0\right)+H\left(Z_{1}^{n} \mid W=1\right)+H\left(Z_{1}^{n} \mid W=2\right)\right) \\
& =\frac{1}{3} H\left(Z_{1}^{n} \mid W=2\right)=\frac{n}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
H\left(Z_{1}^{n}, W\right) & =H\left(Z_{1}^{n} \mid W\right)+H(W) \\
& =\frac{n}{3}+\log 3 .
\end{aligned}
$$

Taking the limit for both upper and lower bounds, we obtain

$$
\begin{aligned}
\lim _{n} \frac{1}{n} H\left(Z_{1}^{n} \mid W\right) & \leq \lim _{n} \frac{1}{n} H\left(Z_{1}^{n}\right) \\
\frac{1}{3} & \leq \lim _{n} \frac{1}{n} H\left(Z_{1}^{n}, W\right) \\
\frac{1}{n} H\left(Z_{1}^{n}\right) & \leq \frac{1}{3}
\end{aligned}
$$

Therefore, $\lim _{n} \frac{1}{n} H\left(Z_{1}^{n}\right)=\frac{1}{3}$.
(b) $I\left(X^{n} ; Y^{n}\right)=H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)=H\left(Y^{n}\right)-H\left(Z^{n}\right)$. Note that $H\left(Y^{n}\right) \leq n$ and equality holds if and only if Y_{i} s are independently and uniformly distributed. This is attained when X_{i} s are also independently and uniformly distributed. We now verify this claim.

- If $W=0$ or $W=1$, the noise Z_{1}^{n} is fixed and $Y_{1}^{n}=X_{1}^{n}+0^{n}$ or $Y_{1}^{n}=X_{1}^{n}+1^{n}$. One can see that $Y_{i} \mathrm{~S}$ are independently and uniformly distributed if $X_{i} \mathrm{~S}$ are also independently and uniformly distributed.
- If $W=2$, then Z_{i} s are i.i.d. and the output Y_{1}^{n} will be independently and uniformly distributed and will also be independent of the input X_{1}^{n}.

Therefore $p_{X}\left(X_{1}^{n}=x_{1}^{n}\right)=\frac{1}{2^{n}}$, for all $x_{1}^{n}=\{0,1\}^{n}$ maximizes $I\left(X^{n} ; Y^{n}\right)$. In this case,

$$
C_{n}=1-H\left(Z^{n}\right) / n .
$$

(c) Using part (a), we have $\lim _{n} C_{n}=1-\lim _{n} H\left(Z^{n}\right) / n=\frac{2}{3}$.
(d) Suppose we have two codewords as we want to send one bit of information. When $W=2$, the output is independent of the input. Therefore, the receiver cannot do better than choosing one of the codewords randomly, which implies that the error probability is $\frac{1}{2}$. Since $W=2$ with probability $\frac{1}{3}$, we see that the error probability for any code is greater than $\frac{1}{6}$.
(e) The capacity is zero as the error probability cannot be made arbitrarily small.

Problem 3.

a) Consider any code \mathcal{C} with $|\mathcal{C}|=2^{n R}$ and error probability p_{e}. Taking the hint, we will need to show that :

1) There is a k such that $\left|\mathcal{C}_{k}\right| \geq 2^{n R} /(n+1)$, which implies that $\log \left|C_{k}\right| / n=R^{\prime} \geq$ $R-\frac{\log (n+1)}{n}$. This is due to the fact that we have $2^{n R}$ codewords and $(n+1)$ possible value of k, i.e., $k \in\{0,1, \ldots, n\}$. Hence it is justified by the pigeonhole principle.
You can also prove this by contradiction. If for all k we have $\left|\mathcal{C}_{k}\right|<2^{n R} /(n+1)$, then $|\mathcal{C}|=\sum_{k}\left|\mathcal{C}_{k}\right|<2^{n R}$. This contradicts the fact that $|\mathcal{C}|=2^{n R}$.
2) For any k, we define $\mathcal{U}_{k}=\left\{u \in \mathcal{U}: \operatorname{enc}(u) \in \mathcal{C}_{k}\right\}$. Therefore

$$
p_{e}^{\prime}=\max _{u \in \mathcal{U}_{k}} W^{n}\left(\operatorname{dec}\left(Y^{n}\right) \neq u \mid X^{n}=\operatorname{enc}(u)\right) \leq \max _{u \in \mathcal{U}} W^{n}\left(\operatorname{dec}\left(Y^{n}\right) \neq u \mid X^{n}=\operatorname{enc}(u)\right)=p_{e}
$$

where the inequality is because we optimize over a subset of \mathcal{U}.
Now, for every $R<C$, take n large enough such that $R+\log (n+1) / n<C$. As we have discussed in class, there exists a code \mathcal{C} with rate $R+\log (n+1) / n$ with arbitrarily small error probability p_{e}. As we have proved in 1) and 2), there exists a constant-weight subset of \mathcal{C}, i.e. \mathcal{C}_{k}^{\prime}, with rate R and smaller error probability p_{e}^{\prime}. This implies that there exists a rate-achieving constant-weight code.
b) Consider any codewords $x^{n} \in \mathcal{C}$ and any possible channel output y^{n}. For $\operatorname{BSC}(\mathrm{p})$, we have

$$
W\left(Y^{n}=y^{n} \mid X^{n}=x^{n}\right)=p^{\sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq y_{i}\right\}}(1-p)^{\sum_{i=1}^{n} \mathbb{1}\left\{x_{i}=y_{i}\right\}} .
$$

For $0<p<1$, this probability is always positive. Hence, any pair of codewords and channel output is compatible and the decoder always return ?. This implies that $C_{\text {eo }}=0$.
For $p=0$ or $p=1$, for any x^{n}, there is only one y^{n} such that this probability is positive. Hence the decoder always return a correct guess and the capacity $C_{e o}=1$.
c) As the channel is BEC, it cannot flip bits on the channel inputs. Furthermore, as we know that y^{n} contains j erasures and the channel is i.i.d., then the probability of this event happens is $p^{j}(1-p)^{n-j}$ if x^{n} is compatible with y^{n}. Hence

$$
W^{n}\left(Y^{n}=y^{n} \mid X^{n}=x^{n}\right)= \begin{cases}0 & \exists i, y_{i} \neq ? \text { and } y_{i} \neq x_{i} \\ p^{j}(1-p)^{n-j} & \text { otherwise }\end{cases}
$$

d) By Bayes' rule, we have

$$
\operatorname{Pr}\left(U=u \mid Y^{n}=y^{n}\right)=\frac{W^{n}\left(Y^{n}=y^{n} \mid U=u\right) \operatorname{Pr}(U=u)}{\sum_{u \in U} W^{n}\left(Y^{n}=y^{n} \mid U=u\right) \operatorname{Pr}(U=u)}=\frac{W^{n}\left(Y^{n}=y^{n} \mid U=u\right)}{\sum_{u \in U} W^{n}\left(Y^{n}=y^{n} \mid U=u\right)}
$$

where the last inequality is due to U is distributed uniformly. From c, we know that any x^{n} which compatible with y^{n} has a similar $W^{n}\left(Y^{n}=y^{n} \mid U=u\right)$ value. Therefore we have

$$
\operatorname{Pr}\left(U=u \mid Y^{n}=y^{n}\right)=\frac{1}{\mid\left\{x^{n} \in \mathcal{C}: x^{n} \text { is compatible with } y^{n}\right\} \mid} \leq \frac{1}{2}
$$

where the last inequality is due to the fact that $T\left(y^{n}\right) \geq 2$.
e) Consider the following,

$$
\begin{aligned}
& =\operatorname{Pr}(\hat{U} \neq U) \\
& =\sum_{y^{n} \in B} \operatorname{Pr}\left(\hat{U} \neq U, Y^{n}=y^{n}\right)+\sum_{y^{n}: T\left(y^{n}\right)=1} \operatorname{Pr}\left(\hat{U} \neq U, Y^{n}=y^{n}\right)+\sum_{y^{n}: T\left(y^{n}\right)=0} \operatorname{Pr}\left(\hat{U} \neq U, Y^{n}=y^{n}\right) \\
& =\sum_{y^{n} \in B} \operatorname{Pr}\left(\hat{U} \neq U, Y^{n}=y^{n}\right)
\end{aligned}
$$

this is due to the fact $y^{n}: T\left(y^{n}\right)=1$ is always decoded correctly and $y^{n}: T\left(y^{n}\right)=0$ has $W^{n}\left(Y^{n}=y^{n} \mid X^{n}=x^{n}\right)=0$ as we have shown in c). This implies

$$
\begin{aligned}
\operatorname{Pr}(\hat{U} \neq U) & =\sum_{y^{n} \in B}\left(1-\operatorname{Pr}\left(\hat{U}=U \mid Y^{n}=y^{n}\right)\right) P\left(Y^{n}=y^{n}\right) \\
& \geq \frac{1}{2} \sum_{y^{n} \in B} P\left(Y^{n}=y^{n}\right) \\
& =\frac{1}{2} P\left(Y^{n} \in B\right)
\end{aligned}
$$

f) From e), we can deduce that $\operatorname{dec}_{e o}\left(y^{n}\right)=$? iff $y^{n} \in B$. Hence $P\left(\operatorname{dec}_{e o}\left(Y^{n}\right) \neq U\right) \leq$ $2 P(\hat{U} \neq U)$. This implies that $C_{e o}(W) \geq C(W)$ for BEC, because if there exists a code with vanishing p_{e} then there exists codes with vanishing $p_{e o}$.
Now, consider our expansion from e)
$p_{e}=\operatorname{Pr}(\hat{U} \neq U)=\sum_{y^{n} \in B}\left(1-\operatorname{Pr}\left(\hat{U}=U \mid Y^{n}=y^{n}\right)\right) P\left(Y^{n}=y^{n}\right) \leq \sum_{y^{n} \in B} P\left(Y^{n}=y^{n}\right)=p_{e o}$.
In other words, if there exists a codes with vanishing $p_{e o}$ then there exist a code with vanishing p_{e}. This implies that $C_{e o}(W) \leq C(W)$ for BEC.
Hence, $C_{e o}(W)=C(W)$ for BEC.

Problem 4.

a) Consider codewords which achieves minimal distance enc(a) and $\operatorname{enc}(b)$, define the sets $A_{a b}=\left\{k: x_{i, k}=1, x_{j, k}=0\right\}, B_{a b}=\left\{k: x_{i, k}=x_{j, k}=1\right\}$, and $C_{a b}=\left\{k: x_{i, k}=\right.$ $\left.0, x_{j, k}=1\right\}$. As the code is constant-weight, we have $\left|A_{a b}\right|+\left|B_{a b}\right|=\left|B_{a b}\right|+\left|C_{a b}\right|=k$ which implies

$$
d=\left|A_{a b}\right|+\left|C_{a b}\right|=2 k-2\left|B_{a b}\right|
$$

Hence, d must be an even number, as it is equal to an even number minus an even number.

A constant-weight code cannot be linear, because linear codes must contain all zero vectors with weight 0 . But we define $k>0$. Hence contradiction.
b) For any pair of distinct codewords enc(a) and enc(b), define $A_{a b}, B_{a b}, C_{a b}$ as in a). Consider the following equality

$$
\sum_{j=1}^{n} x_{a, j} x_{b, j}=\left|B_{a b}\right|=k-\frac{\left|A_{a b}\right|+\left|C_{a b}\right|}{2}
$$

As it must hold for every $a \neq b$ then

$$
\sum_{j=1}^{n} x_{a, j} x_{b, j} \leq k-\min _{a^{*}, b^{*}, a^{*} \neq b^{*}} \frac{\left|A_{a^{*} b^{*}}\right|+\left|C_{a^{*} b^{*}}\right|}{2}=k-\frac{d}{2}
$$

c) This is a consequence of the Cauchy-Schwartz inequality

$$
\left(\sum_{j=1}^{n} w_{j} 1\right) \leq \sum_{j=1}^{n} w_{j}^{2} \sum_{j=1}^{n} 1=n \sum_{j=1}^{n} w_{j}^{2}
$$

this implies

$$
\frac{k^{2} M^{2}}{n}=\frac{1}{n}\left(\sum_{j=1}^{n} w_{j} 1\right) \leq \sum_{j=1}^{n} w_{j}^{2}
$$

d) We have

$$
\begin{aligned}
\frac{k^{2} M^{2}}{n} & \leq \sum_{j=1}^{n} \sum_{a, b \in[m]} x_{a, j} x_{b, j} \\
& =\sum_{a \neq b} \sum_{j=1}^{n} x_{a, j} x_{b, j}+\sum_{a=b} \sum_{j=1}^{n} x_{a, j} x_{b, j} \\
& \leq \sum_{a \neq b}\left(k-\frac{d}{2}\right)+\sum_{a=b} k
\end{aligned}
$$

where the first term is due to b) and the second term is due to its a k constant-weight code. This implies

$$
\frac{k^{2} M^{2}}{n} \leq M(M-1)\left(k-\frac{d}{2}\right)+M k
$$

which is equivalent to

$$
\frac{k^{2} M}{n}-k \leq(M-1)\left(k-\frac{d}{2}\right) .
$$

e) Plugging the number, we have

$$
\frac{16 M}{9}-4 \leq M-1
$$

which implies

$$
M \leq \frac{27}{7}=3+\frac{6}{7}
$$

as M must be integer, then $M^{*} \leq 3$.
Consider the following instance of $(9,6,4)$ code $\{111100000,000111100,100000111\}$. This implies that $M^{*} \geq 3$.

Hence $M^{*}=3$.

