The deadline is Tuesday, June 2 2020. Please IATEX your homework. No scan of handwritten homework is accepted.

Exercise 1 (adapted from J. Duchi)

$\mathcal{M}_{n}(\mathbb{R})$ is the Hilbert space of $n \times n$ real matrices endowed with the inner product $\langle A, B\rangle=$ $\operatorname{Tr}\left(A^{T} B\right)$. The induced norm is the Euclidian (or Frobenius) norm, i.e.,

$$
\|A\|=\sqrt{\operatorname{Tr}\left(A^{T} A\right)}=\left(\sum_{i, j=1}^{n}\left(A_{i j}\right)^{2}\right)^{1 / 2}
$$

Consider the cone of $n \times n$ symmetric positive semi-definite matrices, denoted $\mathcal{S}_{n}^{+} \subseteq \mathcal{M}_{n}(\mathbb{R})$. For all $A \in \mathcal{S}_{n}^{+}, \lambda_{\max }(A)$ is the maximum eigenvalue associated to A. We define

$$
f: \begin{aligned}
\mathcal{S}_{n}^{+} & \rightarrow[0,+\infty) \\
A & \mapsto \lambda_{\max }(A)
\end{aligned}
$$

a) Show that f is convex.
b) Find a subgradient $V \in \partial f(A)$ for any $A \in \mathcal{S}_{n}^{+}$.

Hint: A subgradient of f at A is a matrix $V \in \mathbb{R}^{n \times n}$ that satisfies:

$$
\forall B \in \mathcal{S}_{n}^{+}: f(B) \geq f(A)+\operatorname{Tr}\left((B-A)^{T} V\right)
$$

Exercise 2 (adapted from 14.3, Understanding Machine Learning)

Let $S=\left(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)\right) \in\left(\mathbb{R}^{d} \times\{-1,+1\}\right)^{m}$. Assume that there exists $\mathbf{w} \in \mathbb{R}^{d}$ such that for every $i \in[m]$ we have $y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq 1$, and let \mathbf{w}^{\star} be a vector that has the minimal norm among all vectors that satisfy the preceding requirement. Let $R=\max _{i}\left\|\mathbf{x}_{i}\right\|$. Define a function $f(\mathbf{w})=\max _{i \in[m]}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)$.
a) Show that $\min _{\mathbf{w}:\|\mathbf{w}\| \leq\left\|\mathbf{w}^{\star}\right\|} f(\mathbf{w})=0$.
b) Show that any w for which $f(\mathbf{w})<1$ separates the examples in S.
c) Show how to calculate a subgradient of f.
d) Describe a subgradient descent algorithm for finding a \mathbf{w} that separates the examples. Show that the number of iterations T of your algorithm satisfies

$$
T \leq R^{2}\left\|\mathbf{w}^{*}\right\|^{2} .
$$

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section 9.1.2. for the analysis.
e) (Not graded) Compare your algorithm to the Batch Perceptron algorithm.

Exercise 3 (6.3 from Understanding Machine Learning)

Let \mathcal{X} be the Boolean hypercube $\{0,1\}^{n}$. For a set $I \subseteq\{1,2, \ldots, n\}$ we denote a parity function h_{I} as follows. On a binary vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n}$,

$$
h_{I}(\mathbf{x})=\sum_{i \in I} x_{i} \quad \bmod 2 .
$$

(That is, h_{I} computes parity of bits in I.) What is the VC-dimension of the class of all such parity functions,

$$
\mathcal{H}_{n-\text { parity }}=\left\{h_{I}: I \subseteq\{1,2, \ldots, n\}\right\} ?
$$

[Not graded] Exercise 4 (adapted from 14.4, Understanding Machine Learning)

```
Algorithm 1: SGD with adaptive learning rate
    parameters: \(T\)
    initialize: \(\mathbf{w}^{(1)}=0\)
    for \(t=1 \ldots T\) do
        Choose a random vector \(\mathbf{v}_{t}\) s.t. \(\mathbb{E}\left[\mathbf{v}_{t} \mid \mathbf{w}^{(t)}\right] \in \partial f\left(w^{(t)}\right)\)
        Set \(\eta_{t}=B / \rho \sqrt{t}\)
        Set \(\mathbf{w}^{(t+1 / 2)}=\mathbf{w}^{(t)}-\eta_{t} \mathbf{v}_{t}\).
        Set \(\mathbf{w}^{(t+1)}=\arg \min _{\mathbf{y}:\|\mathbf{y}\| \leq B}\left\|\mathbf{w}^{(t+1 / 2)}-\mathbf{y}\right\|\).
    end
    output: \(\overline{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}\)
```

Prove the following theorem on the above algorithm and specify the constant $\alpha>0$.
Theorem 1. Let $B, \rho>0$. Let f be a convex function and let $\mathbf{w}^{\star} \in \arg \min _{\mathbf{w}:\|\mathbf{w}\| \leq B} f(\mathbf{w})$. Assume that $S G D$ is run for T iterations with $\eta_{t}=\frac{B}{\rho \sqrt{ } t}$. Assume also that for all $t, \mathbb{E}\left\|\mathbf{v}_{t}\right\|^{2} \leq$ ρ^{2}. Then

$$
\mathbb{E}_{\mathbf{v}_{1: T}}[f(\overline{\mathbf{w}})]-f\left(\mathbf{w}^{\star}\right) \leq \alpha \cdot \frac{\rho B}{\sqrt{T}}
$$

