ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 2

Principles of Digital Communications
Problem Set 1
Feb. 21, 2024

Problem 1. Assume that X_{1} and X_{2} are independent random variables that are uniformly distributed in the interval $[0,1]$. Compute the probability of the following events.
(a) $0 \leq X_{1}-X_{2} \leq \frac{1}{3}$.
(c) $X_{2}-X_{1}=\frac{1}{2}$.
(b) $X_{1}^{3} \leq X_{2} \leq X_{1}^{2}$.
(d) $\left(X_{1}-\frac{1}{2}\right)^{2}+\left(X_{2}-\frac{1}{2}\right)^{2} \leq\left(\frac{1}{2}\right)^{2}$.
(e) Given that $X_{1} \geq \frac{1}{4}$, compute the probability that $\left(X_{1}-\frac{1}{2}\right)^{2}+\left(X_{2}-\frac{1}{2}\right)^{2} \leq\left(\frac{1}{2}\right)^{2}$.

Hint: For each event, identify the corresponding region inside the unit square.
Problem 2. Find the following probabilities.
(a) A box contains m white and n black balls. Suppose k balls are drawn. Find the probability of drawing at least one white ball.
(b) We have two coins; the first is fair and the second is two-headed. We pick one of the coins at random, toss it twice, and obtain heads both times. Find the probability that the coin is fair.

Problem 3. Assume X and Y are random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}A, & 0 \leq x<y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent?
(b) Compute the value of A.
(c) Find the density function of Y. Do this first by arguing geometrically, then compute it analytically.
(d) Find $\mathbb{E}[X \mid Y=y]$. Hint: Argue geometrically.
(e) The $\mathbb{E}[X \mid Y=y]$ found in (d) is a function of y, call it $f(y)$. Find $\mathbb{E}[f(Y)]$. This is $\mathbb{E}[\mathbb{E}[X \mid Y]]$.
(f) Find $\mathbb{E}[X]$ from the definition. Verify that $\mathbb{E}[X]$ is equal to $\mathbb{E}[\mathbb{E}[X \mid Y]]$ computed in (e). Is this a coincidence?

Problem 4. Let Z_{1} and Z_{2} be i.i.d. zero-mean Gaussian random variables, i.e., the pdf of $Z_{i}, i=1,2$ is

$$
f_{Z}(z)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{z^{2}}{2 \sigma^{2}}}
$$

for some $\sigma>0$. Define

$$
X:=\frac{Z_{1}}{\sqrt{Z_{1}^{2}+Z_{2}^{2}}} \quad \text { and } \quad Y:=\frac{Z_{2}}{\sqrt{Z_{1}^{2}+Z_{2}^{2}}}
$$

Prove that (X, Y) is a uniformly chosen point on the unit circle.

Problem 5.

(a) Let X and Y be two continuous real-valued random variables with joint probability density function $f_{X, Y}$. Show that if X and Y are independent, they are also uncorrelated.
(b) Consider two independent and uniformly distributed random variables $U \in\{0,1\}$ and $V \in\{0,1\}$. Assume that X and Y are defined as follows: $X=U+V$ and $Y=|U-V|$. Are X and Y independent? Compute the covariance of X and Y. What do you conclude?

Problem 6. Assume you pick a point on the surface of the unit sphere (i.e. the sphere centered at the origin with radius 1) uniformly at random and (X, Y, Z) denotes its coordinates (in 3 D space). Compute $\mathbb{E}\left[X^{2}\right]$.

Problem 7. Assume the random variable X has an exponential distribution given by $f_{X}(x)=e^{-x}$ when $x \geq 0$. Similarly, \hat{X} is exponentially distributed with $f_{\hat{X}}(\hat{x})=2 e^{-2 \hat{x}}$ for $\hat{x} \geq 0$.
(a) For what values of x do we have $f_{X}(x) \leq f_{\hat{X}}(x)$?
(b) Calculate $\mathbb{P}\left(f_{X}(X) \leq f_{\hat{X}}(X)\right)$.
(c) Calculate $\mathbb{P}\left(f_{X}(\hat{X}) \geq f_{\hat{X}}(\hat{X})\right)$.

