ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 9
Principles of Digital Communications
Solutions to Problem Set 4

Solution 1. If $H=0$, we have $Y_{2}=Z_{1} Z_{2}=Y_{1} Z_{2}$, and if $H=1$, we have $Y_{2}=-Z_{1} Z_{2}=$ $Y_{1} Z_{2}$. Therefore, $Y_{2}=Y_{1} Z_{2}$ in all cases. Now since Z_{2} is independent of H, we clearly have $H \rightarrow Y_{1} \rightarrow\left(Y_{1}, Y_{1} Z_{2}\right)$. Hence, Y_{1} is a sufficient statistic.

Solution 2.
(a) The MAP decoder $\hat{H}(y)$ is given by

$$
\hat{H}(y)=\arg \max _{i} P_{Y \mid H}(y \mid i)= \begin{cases}0 & \text { if } y=0 \text { or } y=1 \\ 1 & \text { if } y=2 \text { or } y=3 .\end{cases}
$$

$T(Y)$ takes two values with the conditional probabilities

$$
P_{T \mid H}(t \mid 0)=\left\{\begin{array}{ll}
0.7 & \text { if } t=0 \\
0.3 & \text { if } t=1
\end{array} \quad P_{T \mid H}(t \mid 1)= \begin{cases}0.3 & \text { if } t=0 \\
0.7 & \text { if } t=1 .\end{cases}\right.
$$

Therefore, the MAP decoder $\hat{H}(T(y))$ is

$$
\hat{H}(T(y))=\arg \max _{i} P_{T(Y) \mid H}(t \mid i)=\left\{\begin{array}{lll}
0 & \text { if } t=0 & (y=0 \text { or } y=1) \\
1 & \text { if } t=1 & (y=2 \text { or } y=3) .
\end{array}\right.
$$

Hence, the two decoders are equivalent.
(b) We have

$$
\operatorname{Pr}\{Y=0 \mid T(Y)=0, H=0\}=\frac{\operatorname{Pr}\{Y=0, T(Y)=0 \mid H=0\}}{\operatorname{Pr}\{T(Y)=0 \mid H=0\}}=\frac{0.4}{0.7}=\frac{4}{7}
$$

and

$$
\operatorname{Pr}\{Y=0 \mid T(Y)=0, H=1\}=\frac{\operatorname{Pr}\{Y=0, T(Y)=0 \mid H=1\}}{\operatorname{Pr}\{T(Y)=0 \mid H=1\}}=\frac{0.1}{0.3}=\frac{1}{3} .
$$

Thus $\operatorname{Pr}\{Y=0 \mid T(Y)=0, H=0\} \neq \operatorname{Pr}\{Y=0 \mid T(Y)=0, H=1\}$, hence $H \rightarrow$ $T(Y) \rightarrow Y$ is not true, although the MAP decoders are equivalent.

Solution 3.

(a) The MAP decision rule can always be written as

$$
\begin{aligned}
\hat{H}(y) & =\arg \max _{i} f_{Y \mid H}(y \mid i) P_{H}(i) \\
& =\arg \max _{i} g_{i}(T(y)) h(y) P_{H}(i) \\
& =\arg \max _{i} g_{i}(T(y)) P_{H}(i) .
\end{aligned}
$$

The last step is valid because $h(y)$ is a non-negative constant which is independent of i and thus does not give any further information for our decision.
(b) Let us define the event $\mathcal{B}=\{y: T(y)=t\}$. Then,

$$
\begin{aligned}
f_{Y \mid H, T(Y)}(y \mid i, t) & =\frac{f_{Y, T(Y) \mid H}(y, t \mid i) P_{H}(i)}{\int_{\mathcal{Y}} f_{Y, T(Y) \mid H}(y, t \mid i) P_{H}(i) d y}=\frac{f_{Y \mid H}(y \mid i) f_{T(Y) \mid Y, H}(t \mid y, i)}{\int_{\mathcal{Y}} f_{Y \mid H}(y \mid i) f_{T(Y) \mid Y, H}(t \mid y, i) d y} \\
& =\frac{f_{Y \mid H}(y \mid i) \mathbb{1}_{\mathcal{B}}(y)}{\int_{\mathcal{B}} f_{Y \mid H}(y \mid i) d y} .
\end{aligned}
$$

If $f_{Y \mid H}(y \mid i)=g_{i}(T(y)) h(y)$, then

$$
\begin{aligned}
f_{Y \mid H, T(Y)}(y \mid i, t) & =\frac{g_{i}(T(y)) h(y) \mathbb{1}_{\mathcal{B}}(y)}{\int_{\mathcal{B}} g_{i}(T(y)) h(y) d y} \\
& =\frac{g_{i}(t) h(y) \mathbb{1}_{\mathcal{B}}(y)}{g_{i}(t) \int_{\mathcal{B}} h(y) d y} \\
& =\frac{h(y) \mathbb{1}_{\mathcal{B}}(y)}{\int_{\mathcal{B}} h(y) d y} .
\end{aligned}
$$

Hence, we see that $f_{Y \mid H, T(Y)}(y \mid i, t)$ does not depend on i, so $H \rightarrow T(Y) \rightarrow Y$.
(c) Note that $P_{Y_{k} \mid H}(1 \mid i)=p_{i}, P_{Y_{k} \mid H}(0 \mid i)=1-p_{i}$ and

$$
P_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid i\right)=P_{Y_{1} \mid H}\left(y_{1} \mid i\right) \cdots P_{Y_{n} \mid H}\left(y_{n} \mid i\right) .
$$

Thus, we have

$$
P_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid i\right)=p_{i}^{t}\left(1-p_{i}\right)^{(n-t)}
$$

where $t=\sum_{k} y_{k}$.
Choosing $g_{i}(t)=p_{i}^{t}\left(1-p_{i}\right)^{(n-t)}$ and $h(y)=1$, we see that $P_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid i\right)$ fulfills the condition in the question.
(d) Because Y_{1}, \ldots, Y_{n} are independent,

$$
\begin{aligned}
f_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid i\right) & =\prod_{k=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(y_{k}-m_{i}\right)^{2}}{2}} \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\sum_{k=1}^{n} \frac{\left(y_{k}-m_{i}\right)^{2}}{2}} \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{\sum_{k=1}^{n} y_{k}^{2}}{2}} e^{n m_{i}\left(\frac{1}{n} \sum_{k=1}^{n} y_{k}-\frac{m_{i}}{2}\right)} .
\end{aligned}
$$

Choosing $g_{i}(t)=e^{n m_{i}\left(t-\frac{m_{i}}{2}\right)}$ and $h\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{\sum_{k=1}^{n} y_{k}^{2}}{2}}$, we see that

$$
f_{Y_{1}, \ldots, Y_{n} \mid H}\left(y_{1}, \ldots, y_{n} \mid i\right)=g_{i}\left(T\left(y_{1}, \ldots, y_{n}\right)\right) h\left(y_{1}, \ldots, y_{n}\right) .
$$

Hence the condition in the question is fulfilled.
(a) Since the X_{i} are i.i.d, the joint probability density (or mass) function is

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\prod_{i=1}^{n} h\left(x_{i}\right)\right] \exp \left[c(\theta) \sum_{i=1}^{n} T\left(x_{i}\right)-n B(\theta)\right] .
$$

By the Fisher-Neyman factorization theorem, $\sum_{i=1}^{n} T\left(x_{i}\right)$ is a sufficient statistic, where $T\left(x_{i}\right)$ is a sufficient statistic for the random variable X_{i}.
(b) It's easier to work with single random variables and use the result from (a):

- $p_{X}(x)=\lambda \exp (-\lambda x)=\exp \left(-\lambda x-\log \frac{1}{\lambda}\right)$
$h(x)=1, c(\theta)=-\theta, T(x)=x, B(\theta)=\log \frac{1}{\theta}$
By (a), $\sum_{i=1}^{n} x_{i}$ is a sufficient statistic for $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- $p_{X}(x)=\frac{1}{2 \sigma} \exp \left(-\frac{|x-\mu|}{\sigma}\right)=\exp \left(\left(-\frac{1}{\sigma}\right)|x-\mu|-(\log (2 \sigma))\right)$
$h(x)=1, c(\theta)=-\frac{1}{\theta}, T(x)=|x-\mu|, B(\theta)=\log (2 \theta)$
By (a), $\sum_{i=1}^{n}\left|x_{i}-\mu\right|$ is a sufficient statistic for $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- $p_{X}(x)=\frac{\lambda^{x} \exp (-\lambda)}{x!}=\frac{1}{x!} \exp (\log (\lambda) x-\lambda)$
$h(x)=\frac{1}{x!}, c(\theta)=\log \theta, T(x)=x, B(\theta)=\theta$
By (a), $\sum_{i=1}^{n} x_{i}$ is a sufficient statistic for $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- $p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}=\binom{n}{x} \exp \left(\log \left(\frac{p}{1-p}\right) x-n \log \frac{1}{1-p}\right)$
$h(x)=\binom{n}{x}, c(\theta)=\log \frac{p}{1-p}, B(\theta)=n \log \frac{1}{1-p}$
By (a), $\sum_{i=1}^{n} x_{i}$ is a sufficient statistic for $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

Solution 5.

(a) Inequality (a) follows from the Bhattacharyya Bound.

Using the definition of DMC, it is straightforward to see that

$$
\begin{aligned}
& P_{Y \mid X}\left(y \mid c_{0}\right)=\prod_{i=1}^{n} P_{Y \mid X}\left(y_{i} \mid c_{0, i}\right) \quad \text { and } \\
& P_{Y \mid X}\left(y \mid c_{1}\right)=\prod_{i=1}^{n} P_{Y \mid X}\left(y_{i} \mid c_{1, i}\right)
\end{aligned}
$$

(b) follows by substituting the above values in (a).

Equality (c) is obtained by observing that \sum_{y} is the same as $\sum_{y_{1}, \ldots, y_{n}}$ (the first one being a vector notation for the sum over all possible y_{1}, \ldots, y_{n}).
In (c), we see that we want the sum of all possible products. This is the same as summing over each y_{i} and taking the product of the resulting sum for all y_{i}. This results in equality (d). We obtain (e) by writing (d) in a more concise form.
When $c_{0, i}=c_{1, i}, \sqrt{P_{Y \mid X}\left(y \mid c_{0, i}\right) P_{Y \mid X}\left(y \mid c_{1, i}\right)}=P_{Y \mid X}\left(y \mid c_{0, i}\right)$. Therefore,

$$
\sum_{y} \sqrt{P_{Y \mid X}\left(y \mid c_{0, i}\right) P_{Y \mid X}\left(y \mid c_{1, i}\right)}=\sum_{y} P_{Y \mid X}\left(y \mid c_{0, i}\right)=1 .
$$

This does not affect the product, so we are only interested in the terms where $c_{0, i} \neq c_{1, i}$. We form the product of all such sums where $c_{0, i} \neq c_{1, i}$. We then look out for terms where $c_{0, i}=a$ and $c_{1, i}=b, a \neq b$, and raise the sum to the appropriate power. (Eg. If we have the product prpqrpqrr, we would write it as $p^{3} q^{2} r^{4}$). Hence equality (f).
(b) For a binary input channel, we have only two source symbols $\mathcal{X}=\{a, b\}$. Thus,

$$
\begin{aligned}
P_{e} & \leq z^{n(a, b)} z^{n(b, a)} \\
& =z^{n(a, b)+n(b, a)} \\
& =z^{d_{H}\left(c_{0}, c_{1}\right)}
\end{aligned}
$$

(c) The value of z is:
(i) For a binary input Gaussian channel,

$$
\begin{aligned}
z & =\int_{y} \sqrt{f_{Y \mid X}(y \mid 0) f_{Y \mid X}(y \mid 1)} d y \\
& =\exp \left(-\frac{E}{2 \sigma^{2}}\right)
\end{aligned}
$$

(ii) For the Binary Symmetric Channel (BSC),

$$
\begin{aligned}
z & =\sqrt{\operatorname{Pr}\{y=-1 \mid x=-1\} \operatorname{Pr}\{y=-1 \mid x=1\}}+\sqrt{\operatorname{Pr}\{y=1 \mid x=-1\} \operatorname{Pr}\{y=1 \mid x=1\}} \\
& =2 \sqrt{\delta(1-\delta)} .
\end{aligned}
$$

(iii) For the Binary Erasure Channel (BEC),

$$
\begin{aligned}
z= & \sqrt{\operatorname{Pr}\{y=-1 \mid x=-1\} \operatorname{Pr}\{y=-1 \mid x=1\}}+\sqrt{\operatorname{Pr}\{y=E \mid x=-1\} \operatorname{Pr}\{y=E \mid x=1\}} \\
& +\sqrt{\operatorname{Pr}\{y=1 \mid x=-1\} \operatorname{Pr}\{y=1 \mid x=1\}} \\
= & 0+\delta+0 \\
= & \delta
\end{aligned}
$$

Solution 6.

$$
\begin{aligned}
P_{00} & =\operatorname{Pr}\left\{\left(N_{1} \geq-a\right) \cap\left(N_{2} \geq-a\right)\right\} \\
& =\operatorname{Pr}\left\{\left(N_{1} \leq a\right)\right\} \operatorname{Pr}\left\{\left(N_{2} \leq a\right)\right\} \\
& =\left[1-Q\left(\frac{a}{\sigma}\right)\right]^{2} .
\end{aligned}
$$

By symmetry:

$$
\begin{aligned}
P_{01}=P_{03} & =\operatorname{Pr}\left\{\left(N_{1} \leq-(2 b-a)\right) \cap\left(N_{2} \geq-a\right)\right\} \\
& =\operatorname{Pr}\left\{N_{1} \geq 2 b-a\right\} \operatorname{Pr}\left\{N_{2} \leq a\right\} \\
& =Q\left(\frac{2 b-a}{\sigma}\right)\left[1-Q\left(\frac{a}{\sigma}\right)\right] . \\
P_{02} & =\operatorname{Pr}\left\{\left(N_{1} \leq-(2 b-a)\right) \cap\left(N_{2} \leq-(2 b-a)\right)\right\} \\
= & \operatorname{Pr}\left\{N_{1} \geq 2 b-a\right\} \operatorname{Pr}\left\{N_{2} \geq 2 b-a\right\} \\
= & {\left[Q\left(\frac{2 b-a}{\sigma}\right)\right]^{2} . }
\end{aligned}
$$

$$
\begin{aligned}
P_{0 \delta} & =1-\operatorname{Pr}\left\{\left(Y \in \mathcal{R}_{0}\right) \cup\left(Y \in \mathcal{R}_{1}\right) \cup\left(Y \in \mathcal{R}_{2}\right) \cup\left(Y \in \mathcal{R}_{3}\right) \mid c_{0} \text { was sent }\right\} \\
& =1-P_{00}-P_{01}-P_{02}-P_{03} \\
& =1-\left[1-Q\left(\frac{a}{\sigma}\right)\right]^{2}-2 Q\left(\frac{2 b-a}{\sigma}\right)\left[1-Q\left(\frac{a}{\sigma}\right)\right]-\left[Q\left(\frac{2 b-a}{\sigma}\right)\right]^{2} \\
& =1-\left[1-Q\left(\frac{a}{\sigma}\right)+Q\left(\frac{2 b-a}{\sigma}\right)\right]^{2}
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
P_{0 \delta} & =\operatorname{Pr}\left\{\left(N_{1} \in[a, 2 b-a]\right) \cup\left(N_{2} \in[a, 2 b-a]\right)\right\} \\
& =\operatorname{Pr}\left\{N_{1} \in[a, 2 b-a]\right\}+\operatorname{Pr}\left\{N_{2} \in[a, 2 b-a]\right\}-\operatorname{Pr}\left\{\left(N_{1} \in[a, 2 b-a]\right) \cap\left(N_{2} \in[a, 2 b-a]\right)\right\} \\
& =2\left[Q\left(\frac{a}{\sigma}\right)-Q\left(\frac{2 b-a}{\sigma}\right)\right]-\left[Q\left(\frac{a}{\sigma}\right)-Q\left(\frac{2 b-a}{\sigma}\right)\right]^{2},
\end{aligned}
$$

which gives the same result as before.

