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Problem 1. (8 points)
Suppose c1, . . . , cm (all in Rn) are the codewords of a communication system with two
receivers. Receiver A observes (A1, A2) where A1 = ci + Z1, A2 = Z1 + Z2, Receiver B
observes B1 = ci + Z1, B2 = ci − Z2, where Z1 ∈ Rn and Z2 ∈ Rn are additive noises.

(a) (2 pts) Show that receiver A and receiver B have the same error probability (assuming
both implement the optimal decision rule).
Hint: Show that receiver A can form the observation of receiver B and vice versa.

Solution: From (B1, B2) we can compute (B1, B1 − B2) = (A1, A2), similarly from
(A1, A2) we can compute (A1, A1 − A2) = (B1, B2). Hence (A1, A2) is a sufficient
statistic for (B1, B2) and (B1, B2) is a sufficient statistic for (A1, A2), which implies
that they must have the same error probability.

For the rest of the problem suppose Z1 and Z2 are independent and both are N (0, σ2In).

(b) (2 pts) Show that U = (Z1 − Z2)/2 and W = (Z1 + Z2)/2 are independent.

Solution: Because of Gaussianity it suffices to check that E[UiWk] = 0 for all i, k =
1, . . . , n. This is obvious for i ̸= k, since we have E[UiWk] = E[Ui]E[Wk] = 0. For
i = k we get

E[UiWi] =
1

4
E
[
(Z1i + Z2i)(Z1i − Z2i)

]
=

1

4
E
[
Z2

1i − Z2
2i

]
= 0.

(c) (2 pts) Show that for receiver B, T = (B1 +B2)/2 is a sufficient statistic.

Solution: With Y = (T,W ), fY |H(y|i) = fUW
(
(t − ci), w

)
, which, by (b) equals

fU(t− ci)fW (w) which is of the form gi(t)h(y), so we are done by the Fisher-Neyman
theorem.

Consider now a receiver C that observes B1 but with noise Z1 being N (0, τ 2In).

(d) (2 pts) Can you find a τ0 such that receiver C will perform better/worse than receiver
B when τ 2 is less/more than τ 20 ?
Hint: Clearly τ0 should depend on σ.

Solution: Receiver C observes ci +Z, where Z ∼ N (0, τ 2In). Recall that for receiver
B, T = ci+(Z1−Z2)/2 is a sufficient statistic, and (Z1−Z2)/2 ∼ N

(
0, σ

2

2
In
)
. Hence,

τ 20 = σ2/2 is the critical value of τ 2.

Remarks: The conclusion from part (d) is that observing ci + Z with Z ∼ N (0, τ 2In) is
equivalent to observing (ci + Z1, ci − Z2) with Z1, Z2 i.i.d. N (0, σ2In) when τ 2 = σ2/2,
which makes sense intuitively.



Problem 2. (10 points)

Suppose a pulse ψ(t) has Fourier transform ψF(f), with |ψF(f)|2 sketched as below.

f

|ψF(f)|2

−f0 f0

A

(a) (3 pts) Find the smallest positive T and the corresponding A = |ψF(0)|2 that will
make

(
ψj(t) = ψ(t− jT ) : j ∈ Z

)
an orthonormal collection of waveforms.

Solution: We use the Nyquist criterion: the figure has the “band-edge symmetry
property” around 2.5f0, so

∑
k |ψF (f − kf1)|2 = A when f1 = 5f0. So with T =

1/f1 = 1/(5f0), the collection of pulses
(
ψk : k ∈ Z

)
with ψk(t) = ψ(t − kT ) an

orthogonal collection. To make the collection orthonormal, we also need to choose
A = T .

With T and A as in (a), let w(t) =
∑

j∈Z
√
EsXjψ(t− jT ) and W (t) = w(t+Θ) where Θ

is uniform in [0, T ] and independent of
(
Xj : j ∈ Z

)
.

(b) (3 pts) Suppose Xj are i.i.d., with Pr(Xj = 1) = Pr(Xj = −1) = 1/2. Sketch
the power spectral density SW (f) of W (t). Which (if any) of the values SW (0),
SW
(
1/(2T )

)
, SW

(
1/T

)
are equal to 0?

Solution: The power spectral density of W is given by

SW (f) = Es
|ψF(f)|2

T

∑
k

KX [k] exp(−j2πkfT ).

Here KX [k] = 1{k = 0}, so SW (f) = Es|ψF(f)|2/T . Hence, SW (0) = Es|ψF(0)|2/T =
1, SW

(
1/(2T )

)
= Es|ψF(2.5f0)|2/T and SW

(
1/T

)
= Es|ψF(5f0)|2/T . Of the three

values, only the last one is zero.

Suppose we are requested to ensure SW (0) = 0. A colleague suggests settingXj = Bj−Bj−1

where Bj are i.i.d., with Pr(Bj = 0) = Pr(Bj = 1) = 1/2.

(c) (2 pts) With
(
Xj : j ∈ Z

)
as above, find KX [k] = E[XjXj+k].

Solution: The values of k for which KX [k] are not zero are 0, 1 and −1, with KX [0] =
1/2, KX [1] = KX [−1] = −1/4.

(d) (2 pts) Find SW (f) with this
(
Xj : j ∈ Z

)
. Does the suggestion of our colleague

work?

Solution: Using the values of KX [k] from (c) in the expression for the power spectral
density, we have

SW (f) =
∑
k

KX [k] exp(−j2πkfT )

=
1

2
− 1

2
cos(2πfT ) = sin2(πfT ),

so SW (f) = Es |ψF (f)|2
T

sin2(πfT ), which gives SW (0) = 0. Hence, the suggestion of
our college does indeed work.
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Remarks: In some cases, it is useful to have SW (0) = 0, since it is difficult to implement
an amplifier for “zero” frequencies in practice. This example shows how a simple encoding
of Xi’s gives us this feature.

Problem 3. (13 points)
Suppose the bit stream b1, b2, . . . with bi = ±1 is encoded by a convolutional encoder to
the symbol stream x1, x2, . . . via

x2j−1 = bjbj−2, x2j = bjbj−1bj−2

(as in the running-example used in the book and class). In computing the x’s we assume
b0 = b−1 = +1. Recall that T (I,D) for this encoder is ID5/(1− 2ID).
Suppose that the receiver receives a sequence yi where yi = xi with probability 1 − p and
yi = 0 with probability p. Which of these two alternatives happens is chosen independently
for each i. Observe that if yi ̸= 0, then the receiver is sure that xi = yi.

(a) (3 pts) Draw a Trellis section that describes the encoder map.

Solution: A Trellis section showing all transitions is given by:

+1,+1

−1,+1

+1,−1

−1,−1

+1/+ 1,+1

−1
/−

1,
−1

+1/+ 1,+1

−1
/−

1,
−1

+1
/+

1,
−1

−
1/

−
1,
+
1

−1/+
1,+1

+1/−
1,+1

−1/+ 1,−1

+
1/−

1,−
1

(b) (2 pts) Describe the Viterbi decoder, by providing the following information: given
the received sequence y1, y2, . . . , we associate the branch labeled (x2j−1, x2j) in the
trellis a metric given by , and the corresponding path metric is to be maximized.

Solution: To the branch (x2j−1, x2j), we associate the metric log pY |X(y2j−1|x2j−1) +
log pY |X(y2j|x2j) to ensure that the corresponding path metric is to be maximized,
where pY |X(y|x) = 1− p if y = x and p if y = 0 (and zero otherwise).

(c) (3 pts) Suppose y1, y2, y3, y4, y5, y6 = 0, 0,−1,−1, 0,+1. What is the Viterbi-decoded
sequence b̂1, b̂2, b̂3?

Solution: Labeling each branch of the trellis with the branch metric in (c) for the
given y sequence, we have:
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+1,+1

−1,+1

+1,−1

−1,−1

2 log p

2 l
og
p

−∞
2 l
og
(1
− p

)

−∞

−
∞

−∞lo
g
p(
1
−
p)

Hence, the Viterbi-decoded sequence is b̂1, b̂2, b̂3 = +1,−1,−1.

(d) (2 pts) Suppose the true bit sequence (b1, . . . , bk) is the all-plus sequence. Observe
that this is encoded as an all-plus x sequence (x1, . . . , xn), and thus the received se-
quence contains only 0’s and +1’s. Suppose b′ = (b′1, . . . , b

′
k) an incorrect bit sequence,

with encoding (x′1, . . . , x
′
n). Show that the probability that the Viterbi decoder will

decide b′ is at most pd where d is the number of −1’s in (x′1, . . . , x
′
n).

Solution: For the Viterbi decoder to decide b′ corresponding to x′ with d elements
equal to −1, it is necessary that the channel must have “erased” (i.e., changed to a
0) at least d elements. The probability that this occurs is exactly pd, and hence, the
probability that the Viterbi decoder decides b′ is at most pd.

(e) (3 pts) By making use of T (I,D) and (d), find an upper bound to the bit error
probability (in terms of p).

Solution: Recall that the bit error probability is given by

Pb =
1

kk0

k−1∑
j=0

∑
h

i(h)π(h),

where the sum is over all detours h that start at depth j w.r.t. the reference, i(h) is the
input distance between the detour h and the reference path, and π(h) is the probabil-
ity that the detour h is taken. This can be upper bounded by

∑∞
i=1

∑∞
d=1 ip

da(i, d),
by using part (d) to observe that pd is an upper bound to probability that the detour
with output distance d is taken. Let A(D) = ∂

∂I
T (I,D) evaluated at I = 1. Then

the required expression
∑∞

i=1

∑∞
d=1 ip

da(i, d) is exactly A(p) = p5

(1−2p)2
.

Remarks: We have seen examples of using the Bhattacharya bound as the “z” parameter
when dealing with convolutional codes for binary-input channels. When the channel is
a binary erasure channel with erasure probability p (as here), the Bhattacharya bound
happens to be exactly p. Here we see (via part (d)), an alternate way to obtain the same
upper bound on the bit error probability.

Problem 4. (11 points)
Suppose ϕ(t) and ξ(t) are two complex-valued low-pass waveforms, containing frequencies
only in the frequency range [−B,B]. Suppose f0 > B. Consider the following sequence of
operations done on a complex number c to obtain a complex number y:

1. construct the real waveform w(t) =
√
2Re{c ϕ(t) exp(j2πf0t)}
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2. construct the complex waveform r(t) =
√
2w(t) exp(−j2πf0t)

3. take the inner product of r and ξ to form y = ⟨r, ξ⟩.

(a) (2 pts) Show that y = c⟨ϕ, ξ⟩.
Solution: Since Re(z) = z+z∗

2
, we have

w(t) =
1√
2

[
c ϕ(t) exp(j2πf0t) + c∗ϕ(t)∗ exp(−j2πf0t)

]
.

Then, r(t) =
√
2w(t) exp(−j2πf0t) is given by

r(t) = c ϕ(t) + c∗ϕ(t)∗ exp(−j4πf0t).

Since ξ is a low-pass waveform with frequency restricted to [−B,B] and f0 > B,
we have that the inner product of the second term above with ξ is zero. Hence,
y = ⟨r, ξ⟩ = c⟨ϕ, ξ⟩.

Consider now a transmitter that transforms the message i to a bandpass transmitted wave-
form wi(t) as follows (exactly in the way we discussed in class):[

i
]
→
[
ci ∈ Cn

]
→
[
wi,E(t) =

∑
j

cijϕj(t)
]
→
[
wi(t) =

√
2Re{wi,E(t) exp(j2πf0t)}

]
.

Here ϕ1, . . . , ϕn are complex orthonormal, baseband waveforms (all supported in the fre-
quency range [−B,B]), and f0 > B.
The signal wi(t) is transmitted on an AWGN channel with noise intensityN0/2, the received
signal is R(t).
The receiver operates as follows:[
R(t)

]
→
[
R(t)

√
2 exp(−j2πf0t)

]
→
[
Y ∈ Cn where Yj = ⟨R, ξj⟩

]
→
[
decision device

]
→
[̂
i
]
.

Note that the receiver forms Y using complex orthonormal baseband basis functions ξ1, . . . , ξn
(all in the frequency range [−B,B]); had the ξ’s been equal to ϕ’s, then we would have our
optimal receiver, with error probability popt(N0).

(b) (3 pts) Find an n × n matrix A such that Y can be written in the form Y = Aci +
Z, where Z is NC(0, N0In), i.e., Z = ZR + jZI with ZR, ZI ∼ N

(
0, N0

2
In
)
being

independent.
Hint: Use (a) and express the entries Akj of the matrix A in terms of the ϕ’s and ξ’s.

Solution: Observe that Yk = ⟨R, ξk⟩, where R(t) = wi(t) +N(t), i.e.,

R(t) =

(∑
j

√
2Re{cijϕj(t) exp(j2πf0t)}

)
+N(t).

By part (a), we have that the inner product of R with ξk is given by
(∑

j cij⟨ϕj, ξk⟩
)
+

⟨N, ξk⟩. This second term is simply a circularly symmetric complex Gaussian random
variable Z ∼ NC(0, N0In) (since the ξ’s form an orthonormal basis). The first term
is exactly Aci, where the elements of A are given by Akj = ⟨ϕj, ξk⟩, and we are done.
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(c) (3 pts) Suppose n = 2 and ⟨ϕ1, ξ1⟩ = 0, ⟨ϕ1, ξ2⟩ = j, ⟨ϕ2, ξ1⟩ = 1, ⟨ϕ2, ξ2⟩ = 0. Show
how the decision device (that produces î from Y ) can be implemented so that the
error probability is equal to popt(N0).

Solution: The optimal receiver would have had Ỹ = ci + Z̃, where Z̃ ∼ NC(0, N0In).
By (b), our Y has components Y1 = ci,2 + Z1, and Y2 = jci,1 + Z2. Since Z1, Z2 are
independent and circularly symmetric, Y ′ = (−jY2, Y1) = ci + (−jZ2, Z1) has the
same statistics as Ỹ , which can be used to construct a î that has the same statistics
(and thus the same error probability) as that of the optimal receiver.

(d) (3 pts) Suppose n = 2 and ⟨ϕ1, ξ1⟩ = ⟨ϕ1, ξ2⟩ = ⟨ϕ2, ξ2⟩ = 1/2, ⟨ϕ2, ξ1⟩ = −1/2. Show
that with the best possible decision device, the error probability will be popt(2N0).

Solution: By part (b), this Y has components Y1 =
ci,1−ci,2

2
+Z1 and Y2 =

ci,1+ci,2
2

+Z1.
This is in a one-to-one correspondence with Y ′ = (Y1 + Y2, Y2 − Y1) = ci + (Z1 +
Z2, Z2 − Z1). Since Z1, Z2 are independent and circularly symmetric, this Y ′ has
the same statistics as Ỹ = ci + Z̃, where Z̃ ∼ NC(0, 2N0In), which can be used to
construct a î that has the same statistics (and thus the same error probability) as
that of the optimal receiver when used over an AWGN channel of noise intensity N0.

Remarks: This problem is an example of a “mismatched” receiver — we encode using the
orthonomal basis represented by ϕ, but we encode using an orthonormal basis represented
by ξ. In part (b), we see an example where this does not affect the error probability,
whereas in part (c), we see an example where it does affect the error probability. In fact,
the error probability will remain unchanged if and only if the matrix A consisting of the
inner products of ϕ’s and ξ’s performs a transformation that is purely rotative, as in (b) —

under the transformation A =

(
0 1
j 0

)
, the vector (1, 0)⊤ is mapped to (j, 0)⊤, and (0, 1)⊤

is mapped to (0, 1)⊤. When A =

(
1/2 −1/2
1/2 1/2

)
as in (c), however, we see that (1, 0)⊤

is mapped to (1/2, 1/2)⊤, and (0, 1)⊤ is mapped to (−1/2, 1/2)⊤, hence the distances are
shrunk by a factor of 1√

2
, which is equivalent to an increase in the noise intensity by 2.
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