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Problem 1. Derive the power spectral density of the random
process

X(t) =
∑
i∈Z

Xiψ(t− iT −Θ),

where {Xi}i∈Z is an i.i.d. sequence of uniformly distributed
random variables taking values in {±

√
E}, Θ is uniformly dis-

tributed in the interval [0, T ], and ψ(t) is as shown in the plot
(called Manchester pulse). The Manchester pulse guarantees
that X(t) has at least one transition per symbol, which facili-
tates the clock recovery at the receiver.

t

ψ(t)

1√
T

− 1√
T

T

Problem 2. Consider the random process

X(t) =
∑
i∈Z

Xi

√
Esψ(t− iTs − T0),

where Ts and Es are fixed positive numbers, ψ(t) is some unit-energy function, T0 is a
uniformly distributed random variable taking values in [0, Ts), and {Xi}i∈Z is the output
of the convolutional encoder described by

X2n = BnBn−2, X2n+1 = BnBn−1Bn−2,

with i.i.d. input sequence {Bi}i∈Z taking values in {±1}.
(a) Express the power spectral density of X(t) for a general ψ(t).

(b) Plot the power spectral density of X(t) assuming that ψ(t) is a unit-norm rectangular
pulse of width Ts.

Problem 3. From the decoder’s point of view, inter-symbol interference (ISI) can be
modeled as follows:

Yi = Xi + Zi

Xi =
L∑

j=0

Bi−jhj, i ∈ N (∗)

where Bi is the ith information bit, h0, . . . , hL are coefficients that describe the inter-symbol
interference, and Zi is zero-mean, Gaussian, of variance σ2, and statistically independent
of everything else. Relationship (∗) can be described by a trellis, and the ML decision rule
can be implemented by the Viterbi algorithm.

(a) Draw the trellis that describes all sequences of the form X1, . . . , X6 resulting from
information sequences of the form B1, . . . , B5, 0, Bi ∈ {0, 1}, assuming

hi =


1, i = 0

−2, i = 1

0, otherwise

To determine the initial state, you may assume that the preceding information sequence
terminated with 0. Label the trellis edges with the input/output symbols.



(b) Specify a metric f(x1, . . . , x6) =
∑6

i=1 f(xi, yi) whose minimization or maximization
with respect to the valid x1, . . . , x6 leads to a maximum likelihood decision. Specify if
your metric needs to be minimized or maximized.

(c) Assume y1, . . . , y6 = {2, 0,−1, 1, 0,−1}. Find the maximum likelihood estimate of the
information sequence B1, . . . , B5.

Problem 4. An output sequence x1, . . . , x10 from the convolutional encoder shown below
is transmitted over the discrete-time AWGN channel. The initial and final state of the
encoder is (1, 1). Using the Viterbi algorithm, find the maximum likelihood information
sequence b̂1, . . . , b̂4, 1, 1, knowing that b1, . . . , b4 are drawn independently and uniformly
from {±1} and that the channel output y1, . . . , y10 = {1, 2,−1, 4,−2, 1, 1,−3,−1,−2}. (It
is for convenience that we are choosing integers rather than real numbers.)

bj ∈ {±1} bj−1

×

bj−2

×

× x2j−1

x2j

Problem 5. Consider the following two encoders where the map T : F0 → F− sends 0 to
1 and 1 to −1. Show that the two encoders produce the same output when their inputs
are related by bj = T (b̄j).
Hint: For a, b ∈ F0, T (a+ b) = T (a)× T (b), where addition is modulo 2 and multiplication is over R.

b̄j ∈ F0 = {0, 1} b̄j−1

+

b̄j−2

+ T

+ T

x̄2j−1

x̄2j

(a) Conventional description. Addition is modulo 2.

bj ∈ F− = {±1} bj−1

×

bj−2

× x2j−1

× x2j

(b) Description used in the book. Multiplication is over R.

Comment: The encoder of (b) is linear over the field F−, whereas the encoder of (a) is linear over F0

only if we omit the output map T . The comparison of the two figures should explain why in this chapter

we have opted for the description of (b) even though the standard description of a convolutional encoder

is as in (a).
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