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Solutions to Problem Set 12 May 24, 2024

Solution 1.

(a) (i) The plots are shown below:
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(ii) The joint density function is invariant under rotation for α = 2 only. For this
value of α, we have X, Y ∼ N

(
0, 1

2

)
.

(b) (i) We know that we can write (x, y) in polar coordinates (r, θ). Hence in general the
joint distribution of X and Y is a function of r and θ. Because of circular sym-
metry the joint distribution should not depend on θ, which means that fX,Y (x, y)
can be written as a function of r. Hence if we denote this function by ψ and use
the independence of X and Y , we have fX(x)fY (y) = ψ(r).

(ii) Taking the partial derivative with respect to x and using the chain rule for dif-
ferentiation, we have f ′

X(x)fY (y) = ψ′(r) ∂r
∂x

= ψ′(r)x
r
. If we divide both sides by

xfX(x)fY (y) we have
f ′X(x)

xfX(x)
= ψ′(r)

rψ(r)
. Proceeding similarly for y, we obtain

f ′
X(x)

xfX(x)
=
ψ′(r)

rψ(r)
=

f ′
Y (y)

yfY (y)
.



(iii)
f ′X(x)

xfX(x)
is a function of x while

f ′Y (y)

yfY (y)
is a function of y. Hence the only way for the

equality to hold is that both of them equal a constant. If we denote this constant
by − 1

σ2 , we reach the final result.

(iv) We have
f ′X(x)

fX(x)
= − x

σ2 . Integrating both sides we have log(fX(x)
C

) = − x2

2σ2 . Hence

fX(x) = C exp(− x2

2σ2 ). fX(x) is a probability density function and so should

integrate to 1, which gives C = 1√
2πσ2

. Hence fX(x) =
1√
2πσ2

exp(− x2

2σ2 ) and by

symmetry fY (y) = 1√
2πσ2

exp(− y2

2σ2 ), which shows that X and Y are Gaussian
random variables.

Solution 2.

(a) Let xE(t) = xR(t) + jxI(t). Then

x(t) =
√
2ℜ{xE(t)ej2πfct}

=
√
2ℜ{[xR(t) + jxI(t)]e

j2πfct}
=
√
2[xR(t) cos(2πfct)− xI(t) sin(2πfct)].

Hence, we have
xEI(t) =

√
2ℜ{xE(t)}

and
xEQ(t) =

√
2ℑ{xE(t)}.

(b) Let xE(t) = α(t)ejβ(t). Then

x(t) =
√
2ℜ{xE(t)ej2πfct}

=
√
2ℜ{α(t)ejβ(t)ej2πfct}

=
√
2ℜ{α(t)ej(2πfct+β(t))}

=
√
2α(t) cos[2πfct+ β(t)].

We thus have

xE(t) = α(t)ejβ(t) =
a(t)√
2
ejθ(t).

(c) From (b) we see that

xE(t) =
A(t)√

2
ejφ.

This is consistent with Example 7.9 (DSB-SC) given in the text. We can also verify:

x(t) =
√
2ℜ{xE(t)ej2πfct}

=
√
2ℜ

{
A(t)√

2
ejφej2πfct

}
= ℜ{A(t)ej(2πfct+φ)}
= A(t) cos(2πfct+ φ).
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Solution 3.

(a) The key observation is that while ej2πf1t and e−j2πf1t are two different signals if f1 ̸= 0,
ℜ{ej2πf1t} and ℜ{e−j2πf1t} are identical.

Therefore, if we fix f1 ̸= 0 and choose a1(t) and a2(t) so that a1(t)e
j2πfct = ej2πf1t and

a2(t)e
j2πfct = e−j2πf1t, we get a1(t) ̸= a2(t) and ℜ

{
a1(t)e

j2πfct
}
= ℜ

{
a2(t)e

j2πfct
}
.

Let a1(t) = e−j2π(fc−f1)t and a2(t) = e−j2π(fc+f1)t. Then a1(t) ̸= a2(t) and

√
2ℜ

{
a1(t)e

j2πfct
}
=
√
2ℜ

{
a2(t)e

j2πfct
}
.

(b) Let b(t) = a(t)ej2πfct, which represents a translation of a(t) in the frequency do-
main. If aF(f) = 0 for f < −fc, then bF(f) = 0 for f < 0. Because ℜ{b(t)} =
1
2

(
a(t)ej2πfct + a∗(t)e−j2πfct

)
, taking the real part has a scaling effect and adds a

negative-frequency component. The negative spectrum is canceled by the h> filter,
and the scaling is compensated by the

√
2 factors from the up-converter and down-

converter. Multiplying by e−j2πfct translates the spectrum back to the initial position.
In conclusion, we obtain a(t).

(c) Take any baseband signal u(t) with frequency domain support [−fc−∆, fc+∆], ∆ > 0.
The signal can be real-valued or complex-valued (for example uF(f) = 1[−fc−∆,fc+∆](f),
which is a sinc in time domain). After we up-convert, the support of uF(f) will not
extend beyond 2fc + ∆. When we chop the negative frequencies we obtain a support
contained in [0, 2fc+∆] and when we shift back to the left the support will be contained
in [−fc, fc +∆], which is too small to be the support of uF(f).

(d) In time domain:

w(t) =
√
2ℜ{a(t)ej2πfct}

a∈R
=
√
2a(t) cos(2πfct).

Therefore,

a(t) =
w(t)√

2 cos(2πfct)
.

In frequency domain: If aF(f) = 0 for f < −fc, we obtain a(t) as described in (b). In
the following, we consider the case aF(f) ̸= 0 for f < −fc.
We have wF(f) =

1√
2
[aF(f − fc) + aF(f + fc)] = a+F(f)+a

−
F(f), with a

+
F(f) =

1√
2
aF(f−

fc) and a−F(f) = 1√
2
aF(f + fc), respectively. These two components have overlap-

ping support in some interval centered at 0. However, there is no overlap for suffi-
ciently large frequencies. This means that for sufficiently large frequencies f we have
wF(f) = 1√

2
a+F(f), which implies that from wF(f) we can observe the right tail of

a+F(f) and use that information to remove the right tail of a−F(f) from wF(f) (the right
tails of a+F(f) and a

−
F(f) are the same because a(t) is real). Hence, from wF(f) we can

read more of the right tail of a+F(f). The procedure can be repeated until we get to
see a+F(f) for all frequencies above fc. At this point, using aF(f) = a+F(f + fc)

√
2 and

the fact that a(t) is real-valued, we have aF(f) for the positive frequencies, hence for
all frequencies.
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Solution 4.

x(t)
√
2 cos(2πfct) = x(t)

[
ej2πfct + e−j2πfct

√
2

]
=
√
2ℜ{xE(t)ej2πfct}

[
ej2πfct + e−j2πfct

√
2

]
=

[
xE(t)e

j2πfct + x∗E(t)e
−j2πfct

√
2

] [
ej2πfct + e−j2πfct

√
2

]
=
xE(t)e

j4πfct + xE(t) + x∗E(t) + x∗E(t)e
−j4πfct

2
.

At the lowpass filter output we have

xE(t) + x∗E(t)

2
= ℜ{xE(t)}.

The calculation for the other path is similar.

Solution 5.

(a) Notice that the sinusoids of w(t) have a period of Tc = 4 ms units of time, which implies
that fc =

1
Tc

= 1
4 ms

= 250 Hz.

(b) Notice that the phase of the sinusoidal signal changes every Ts = 4 ms. (Here we have
Ts = Tc, but in general it is not the case. In practice we usually have Ts ≫ Tc. See the
note at the end.)

The expression of w(t) as a function of t is:

w(t) =


4 cos(2πfct− π

2
) t ∈]0, Ts[

4 cos(2πfct) t ∈]Ts, 2Ts[
4 cos(2πfct+ π) t ∈]2Ts, 3Ts[
4 cos(2πfct+

π
2
) t ∈]3Ts, 4Ts[

=


ℜ
{
4ej(2πfct−

π
2
)
}

t ∈]0, Ts[
ℜ
{
4ej(2πfct)

}
t ∈]Ts, 2Ts[

ℜ
{
4ej(2πfct+π)

}
t ∈]2Ts, 3Ts[

ℜ
{
4ej(2πfct+

π
2
)
}

t ∈]3Ts, 4Ts[

=


ℜ
{
−4jej2πfct

}
t ∈]0, Ts[

ℜ
{
4ej2πfct

}
t ∈]Ts, 2Ts[

ℜ
{
−4ej2πfct

}
t ∈]2Ts, 3Ts[

ℜ
{
4jej2πfct

}
t ∈]3Ts, 4Ts[

=
√
2ℜ

{
wE(t)e

j2πfct
}
,

where

wE(t) =−
4j√
2
1{t ∈]0, Ts[}+

4√
2
1{t ∈]Ts, 2Ts[}

− 4√
2
1{t ∈]2Ts, 3Ts[}+

4j√
2
1{t ∈]3Ts, 4Ts[}

=− j
√
8Ts

1√
Ts
1{t ∈]0, Ts[}+

√
8Ts

1√
Ts
1{t ∈]Ts, 2Ts[}

−
√

8Ts
1√
Ts
1{t ∈]2Ts, 3Ts[}+ j

√
8Ts

1√
Ts
1{t ∈]3Ts, 4Ts[}.
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If we define ψ(t) = 1√
Ts
1{t ∈]0, Ts[}, c0 = −j

√
8Ts, c1 =

√
8Ts, c2 = −

√
8Ts and

c3 = j
√
8Ts, we get

wE(t) =
3∑
i=0

ciψ(t− iTs). (1)

Therefore, the pulse used in the waveform former is ψ(t) = 1√
Ts
1{t ∈]0, Ts[}, and the

waveform former output signal is given by (1). The orthonormal basis that is used is
{ψ(t− iTs)}3i=0.

(c) The symbol sequence is {c0, c1, c2, c3} =
{
−j
√
Es,
√
Es, −

√
Es, j

√
Es
}
, where Es =

8Ts. We can see that the symbol alphabet is
{√
Es, j

√
Es, −

√
Es, −j

√
Es
}
.

(d) We have:

• The output sequence of the encoder is the symbol sequence, which is

{c0, c1, c2, c3} =
{
−j

√
Es,

√
Es, −

√
Es, j

√
Es
}
.

• The symbol alphabet contains 4 symbols. This means that each symbol represents
two bits. Since the symbol rate is fs = 1

Ts
= 250 symbols/s, the bit rate is

2× 250 = 500 bits/s.

• The input/output mapping can be obtained by assigning two bits for each symbol
in the symbol alphabet. Keeping in mind that it is better to minimize the number
of bit-differences between close symbols, we obtain the following input/output
mapping (which is not unique, i.e., we can obtain other mappings that satisfy the
mentioned criterion):

√
Es ←→ 00, j

√
Es ←→ 01, −

√
Es ←→ 11 and −j

√
Es ←→

10.

• Assuming that the above input/output mapping was used, we can obtain the
input sequence of the encoder: 10001101.

Note that in this example, we have Ts = Tc, so fc = fs. This is very unusual. In practice
we almost always have fc ≫ fs, especially if we are using electromagnetic waves.
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