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Problem 1. (7 points)

Suppose Z = (Z1, Z2) is uniformly distributed on the unit disc �(x, y) � x2 + y2 B 1�. In a
binary hypothesis problem the observation Y is given by

Y =
¢̈̈
¦̈
¤̈

Z if H = 0,
βZ if H = 1,

where β A 1 is a known constant. Let p0 = Pr(H = 0) and p1 = 1 − p0 = Pr(H = 1).

(a) (3 pts) Find the MAP decision rule ĤMAP(y).
Hint: If X is uniformly distributed on a set A ⊂ R2, then fX(x) =

1
Area(A)1�x > A�.

Solution: We have

fY SH(yS0) =
1

π
, if y21 + y22 B 1,

fY SH(yS1) =
1

πβ2
, if y21 + y22 B β2.

Hence, the MAP rule is

– if 1 < y21 + y22 B β2, then ĤMAP(y) = 1, since

pH(0)fY SH(yS0)
Ĥ=0

K
Ĥ=1

pH(1)fY SH(yS1)


� p0 ċ 0
Ĥ=0

K
Ĥ=1

p1
1

πβ2
.

– if 0 B y21 + y22 B 1, then decide ĤMAP(y) = 0 if β2 p0
p1
C 1 and 1 else, since

p0 ċ
1

π

Ĥ=0

K
Ĥ=1

p1
1

πβ2

p0
p1

Ĥ=0

K
Ĥ=1

1

β2
.

(b) (2 pts) Are there values of p0 for which the MAP rule does not depend on y? If so,
find them.

Solution: In the answer to part (a), we see that the MAP rule is to always decide
1 if y21 + y22 A 1. Hence, the MAP rule will not depend on y if it also decides 1 for
y21 + y22 B 1, which happens when β2 p0

1−p0
< 1, or equivalently, p0 < 1

1+β2 .



(c) (2 pts) Assume p0 = 1~2. Find Pr(errorSH = 0) and Pr(errorSH = 1).
Solution: When p0 = 1~2, the MAP rule is to decide ĤMAP(y) = 0 if y21 + y22 B 1
and 1 else. When H = 0, we necessarily have y21 + y22 B 1, and there is no error, i.e.,
Pr(errorSH = 0) = 0. When H = 1, we make an error if the decision is 0, i.e., if we
have y21 + y22 B 1. Hence, we have that Pr(errorSH = 1) is equal to the probability that
βZ lies in the unit disc. Since βZ is unifomrly distributed on the disc of radius β,
this is equal to 1

β2 .

Remarks: In this problem, Y 2
1 + Y 2

2 is a sufficient statistic. If the hypotheses are a priori
equally likely, then the MAP rule is to decide 0 if Y lies in the smaller disc and 0 otherwise.
In part (b), we see that if our prior belief about H is sufficiently biased towards 1, then we
never decide 0 — the “evidence” is not strong enough to overcome our initial bias towards
H = 1, regardless of the observation Y .

Problem 2. (12 points)

Suppose Z = [Z1, Z2, Z3]T � N (0,K), with

K =
<@@@@@>

2 −1 −1
−1 2 −1
−1 −1 2

=AAAAA?
.

(a) (2 pts) Show that Z1 +Z2 +Z3 = 0 with probability 1.
Hint: E[X2

] = 0 implies that X = 0 with probability 1.

Solution: Guided by the hint, we compute

E[(Z2
1 +Z2

2 +Z2
3)] = E[Z2

1 +Z2
2 +Z2

3 + 2Z1Z2 + 2Z2Z3 + 2Z3Z1]
= 2 + 2 + 2 + 2(−1) + 2(−1) + 2(−1) = 0.

Hence, we have that Z1 +Z2 +Z3 = 0 with probability 1.

(b) (3 pts) Let A =
<@@@@@>

1 0 0

1~
º
3 2~

º
3 0

1 1 1

=AAAAA?
, and let U = AZ. What is the covariance matrix of

U?
Hint: Show that U1 and U2 are independent, and use (a).

Solution: First note that U is a zero mean Gaussian vector. Also observe that
U3 = Z1 + Z2 + Z3, which, by part (a), is equal to 0 with probability 1. Finally, we

also have that U1 and U2 are independent, since E[U1U2] = E �Z1
1
º

3
(Z1 + 2Z2)� =

1
º

3
[2 + 2(−1)] = 0. To complete the covariance, all we require is the variance of U2,

which is given by 1
3E[(Z1 + 2Z2)2] = 1

3[2 + 4(2) + 4(−1)] = 2. Hence, the covariance
matrix of U is given by

<@@@@@>

2 0 0
0 2 0
0 0 0

=AAAAA?
.

Let c1 = [1, 2, 3]T and c2 = [5, 1, 0]T be the codewords of a communication system with
two equally likely messages, and suppose Y = ci + Z (with Z as above) be the receiver’s
observation if message i is sent.
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(c) (2 pts) Let Ỹ = AY . (Note that A is an invertible matrix, so Ỹ is equivalent to Y .)
Show that (Ỹ1, Ỹ2) is a sufficient statistic.

Solution: We have Ỹ = Aci + AZ = Aci + U . Define c̃i = Aci, then we have c̃1 =
[1, 5~

º
3, 6]T and c̃2 = [5, 7~

º
3,6]T . Also note that, since U3 is 0 mean and 0

variance it is 0, with probability 1. Hence, Ỹ3 = c̃i,3 + U3 = 6, irrespective of i, which
implies that it is irrelevant and (Ỹ1, Ỹ2) is a sufficient statistic.

(d) (3 pts) Find the probability of error of the MAP decision rule for the communication
system above.

Solution: The error probability is simply given by Q � d
2σ
�, where σ2 = Var(U1) =

Var(U2) = 2 and d = Yc̃1 − c̃0Y =
¼

52
3 .

Suppose we replace c1 and c2 above with c1 = [0, 0, 1]T and c2 = [0, 0, −1]T . The observation
Y is still ci +Z, and Ỹ = AY .

(e) (2 pts) What is the probability of error of the MAP decision rule for this new system?
Is (Ỹ1, Ỹ2) still a sufficient statistic? (Explain).

Solution: In this new system, observe that c̃1 = [0, 0, 1]T and c̃2 = [0, 0, −1]T . Hence,
Ỹ3 = 1 when i = 1 and −1 when i = 2 (since U3 = 0). Thus, the error probability is
0. Further, (Ỹ1, Ỹ2) is no longer a sufficient statistic, since we cannot get zero error
probability without looking at Ỹ3, In fact, in this problem, we actually have that not
only is (Ỹ1, Ỹ2) not a sufficient statistic, but it is also irrelevant.

Remarks: Though Z is a vector in R3, it only has dimension 2, since it lives in a two-
dimensional plane given by Z1 + Z2 + Z3 = 0. This suggests that there is a direction
(perpendicular to the plane) where there is “no noise”. In part (e), we exploit this by
choosing codewords that differ along this noiseless direction, allowing us to achieve zero
error probability. In part (c) and (d), however, our choice of codewords was suboptimal —
by choosing codewords that belonged to the same two-dimensional subspace as the noise,
we could not exploit the existence of a noiseless dimension.

Problem 3. (11 points)

Consider the constellation with seven codewords
�ci�6i=0 as given in the diagram. Assume that the
seven messages are equally likely, and let ehex(A)
be the error probability of the MAP decoder that
observes Y = ci +Z, where Z � N (0, I2).

A
A
2

º

3A
2

c0 c1

c2c3

c4

c5 c6

(a) (3 pts) Show that ehex(A) is upper bounded by Pr (Z2
1 +Z2

2 C A2~4).
Hint: You may find it helpful to draw the decision regions.

Solution:
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The MAP decision regions are
marked in the figure to the right.
Observe that a correct decision is
necessarily made when (Z1, Z2) lies
in the circle of radius A

2 centered
at the origin. Hence, the proba-
bility of being correct is at least
Pr (Z2

1 +Z2
2 < A2~4), which implies

that the probability of error is at
most Pr (Z2

1 +Z2
2 C A2~4).

A
A
2

º

3A
2

c0 c1

c2c3

c4

c5 c6

Now consider the waveforms �wi�6i=0 as shown below.

w0(t)

t
0 3

1

w1(t)

t
0 3

1

w2(t)

t
0 3

1

w3(t)

t
0 3

1

w4(t)

t
0 3

1

w5(t)

t
0 3

1

w6(t)

t
0 3

1

(b) (2 pts) Assume that all messages are equally likely. Find a translation of this wave-
form set to minimize the average energy. Let the new waveforms be �w̃i�6i=0.
Solution: To translate the waveforms to obtain the minimum average energy, we sub-
tract the average of the waveforms from each. Note that the average is given exactly
by w0, hence the new waveforms are as given below.
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w̃0(t)

t
0 3

w̃1(t)

t
0 3

1

w̃2(t)

t
0 3

1

w̃3(t)

t
0 3

1

w̃4(t)

t
0

3

−1

w̃5(t)

t
0

3

−1

w̃6(t)

t
0

3
1

(c) (2 pts) Show that w̃1 + w̃4 = w̃2 + w̃5 = w̃3 + w̃6 = 0, and that Yw̃1Y = Yw̃2Y = Yw̃3Y.
Solution: We see clearly from the figure that w̃1 + w̃4 = w̃2 + w̃5 = w̃3 + w̃6 = 0. In
addition, we also have Yw̃1Y = Yw̃2Y = Yw̃3Y =

º
2.

(d) (2 pts) Find the inner products `w̃1, w̃2e, `w̃1, w̃3e, and `w̃2, w̃3e.
Solution: By a direct computation, we obtain `w̃1, w̃2e = 1, `w̃1, w̃3e = −1, and
`w̃2, w̃3e = 1.

(e) (2 pts) Consider a communication system which uses the waveforms �wi�6i=0 to com-
municate over a white Gaussian noise channel with intensity N0

2 . Express the optimal
error probability of this system in terms of ehex(ċ).
Hint: No lengthy computations needed.

Solution: First, observe that since �wi�6i=0 and �w̃i�6i=0 are simply translations of each
other, the error probability of the system that uses �wi�6i=0 will be the same as that
of a system that uses �w̃i�6i=0. Also observe that codewords �ci�6i=0 in the hexago-
nal constellation satisfy (i) c0 = c1 + c4 = c2 + c5 = c3 + c6 = 0, Yc1Y2 = Yc2Y2 = Yc3Y2,
and `c1, c2e = `c2, c3e = −`c1, c3e = Yc1Y2~2. We thus see that `ci, cke = (A2~2)`w̃i, w̃ke.
Hence, there is an orthonormal basis �ψ1, ψ2� such that the waveforms �w̃i�6i=0 are
generated by the codewords �ci�6i=0 using this basis, with scaling

º
2~A. Let R = w̃i+N

be the received signal, then computing the sufficient statistic Y = (`R,ψ1e, `R,ψ2e),
we see that Y =

º

2
A ci + Z, where Z � N �0,

N0

2 I2�. Hence, defining Ỹ =
¼

2
N0
Y , we

have Ỹ = 2
A
º

N0
ci +Z, where Z � N (0, I2). Thus, the error probability of this system

is the same as that using such a hexagonal constellation with A = 2
º

N0
, in terms of

ehex, is given by ehex � 2
º

N0
�.
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Remarks: This is a variant of the triangular and tetrahedral constellations that have been
considered in previous midterms.

Problem 4. (13 points)

Let e1, . . . , en denote the standard basis for Rn, i.e., e1 = [1,0, . . . ,0]T , e2 = [0,1,0, . . . ,0]T ,
. . . , en = [0, . . . ,0,1]T .
We have a communication system with m = 2n codewords c1, . . . , c2n in Rn, with ci = Aei
for i = 1, . . . , n, and ci = −ci−n for i = n + 1, . . . ,2n. Here A A 0 is a positive constant.
The m messages are equally likely, and the receiver’s observation is given by Y = ci + Z if
message i is sent, where Z � N (0, σ2In).

(a) (2 pts) Find the average energy E and the average energy per bit Eb of the signal
constellation above.

Solution: For every i, SSciSS22 = A2. Therefore E = 1

2n

2n

Q
i=1

SSciSS22 = A2. Consequently,

Eb = A2~ log2(2n).

(b) (2 pts) Consider the decision method that first computes i0 = arg maxi=1,...,n SyiS, and

sets Ĥ(y) =
¢̈̈
¦̈
¤̈

i0 if yi0 A 0,
n + i0 else.

Is this rule optimal? (Explain your answer.)

Solution: Let us first focus on the decision boundary between c1, c2. Since messages
are equally likely we need to look at the likelihood ratio and see when it is 0. That
is,

log
fY SH(xnS1)
fY SH(xnS2)

= log
1

(2πσ2)d~2
e−
(x1−A)

2

2σ2 e
−x22
2σ2 ... e

−x2n
2σ2

1
(2πσ2)d~2

e−
(x1)2

2σ2 e
−(x2−A)2

2σ2 ... e
−x2n
2σ2

= log e−
(x1−A)

2

2σ2 e
−x22
2σ2

e−
(x1)2

2σ2 e
−(x2−A)2

2σ2

= A(x1 − x2)
σ2

.

Since A A 0, we choose c1 over c2 whenever Y1 A Y2. Similarly if we look at the decision
boundary between c1 and cn+1, we see that, we prefer c1 over cn+1 whenever Y1 A 0,
this is because,

log
fY SH(xnS1)

fY SH(xnSn + 1)
= log e

−
(x1−A)

2

2σ2

e−
(x1+A)2

2σ2

= 2Ax1
σ2

.

We can generalize this idea to any likelihood ratio. Therefore, the MAP decoder will
find the index i such that SYiS is the largest, and choose the message i if Yi A 0 and
n + i, otherwise.

6



(c) (2 pts) Upper bound the probability of error using the union bound.
Hint: For each codeword ci, the codeword −ci is at distance 2A from it; what is the distance between

ci and the other 2n − 2 codewords?

Solution: Because the noise is white Gaussian, we are essentially doing minimum
distance decoding.

P(errorSH = i) = P(§j x i SSY − cj SS2 B SSY − ciSS2 S H = i)
BQ

jxi

P(SSY − cj SS2 B SSY − ciSS2 S H = i)

Note that, for every j, the term P(SSY − cj SS2 B SSY − ciSS2 S H = i) is equal to

Q�SSci − cj SS2
2σ

�. In our case there is one j such that SSci − cj SS2 = 2A and 2n − 2 j’s

such that SScj − ciSS2 =
º
2A. Therefore,

P(errorSH = i) B Q�A
σ
� + (2n − 2)Q� Aº

2σ
� .

Since this value does not depend on i, we have,

P(error) B Q�A
σ
� + (2n − 2)Q� Aº

2σ
� .

(d) (2 pts) Show that if Eb~σ2 A 4 ln 2, then the probability of error of this communication
system approaches zero as n gets large.
Hint: Use (c), that Q(

º

x) B exp(−x~2), and note that (m − 1) exp(−α log2(m)) tends to zero as m

gets large if α A ln 2.

Solution:

Using part (c), we have,

P(error) B Q�A
σ
� + (2n − 2)Q� Aº

2σ
�

B e
−A2

2σ2 + (2n − 2)e
−A2

4σ2 (*)

The question suggests that if the energy per bit is above a certain threshold, the
error will decay to 0. Note that the energy per bit, Eb = A2~ log2(2n). Therefore, if
the energy per bit is above a certain threshold, then A will grow to infinity as n gets
larger and larger. Therefore, the first term in (*) will decay to 0 anyways.
The second term is

(2n − 2)e
−A2

4σ2 = eln(2n−2)e
−A2

4σ2

= eln(2n−2)e
−Eb log2(2n)

4σ2

= e(ln 2)(1+log2(n−1))e
−Eb(1+log2(n))

4σ2

Note that, the first multiplicative term grows exponentialy with log2 n and the second
decays exponentially with log2 n. The multiplication overall will decay if the decaying
one dominates. That is, if

Eb
4σ2
A ln 2,

the error will decay to 0.
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(e) (2 pts) Show that for i = 1, . . . , n,

ln
pH SY (iSy)

pH SY (n + iSy)
= 2Ayi~σ2.

Solution: This is shown already in part (b), by using Bayes’ rule and the fact that
the messages are equally likely.

(f) (3 pts) Suppose T = t(Y ) where t(ċ) is a deterministic function. Suppose that there
exist y and ỹ, with y x ỹ and t(y) = t(ỹ). Can T be a sufficient statistic? Explain.
Hint: Use (e).

Solution: T = t(Y ) is a sufficient statistic if PH ST (Y )(hSt) = PH ST (Y ),Y (hSt, y) for every
h, t and y such that t(y) = t. Since t(ċ) is a deterministic function, PH ST (Y ),Y (hSt, y) =
PH SY (hSy) for all such y. That is, for every h and t, PH ST (Y )(hSt) = PH SY (hSy) for all
y such that t(y) = t.
Suppose now that H and Y are sampled and you are given the value of t(Y ) = T .
From this you can calculate PH ST (Y )(ċST ), if t(Y ) is a sufficient statistic, as we have
shown, you also know PH SY for every Y that could have been sampled. Using part e
we see that for every y that could have been sampled, you can calculate the quantity,

ln
PH SY (iSy)

PH SY (n + iSy)
= 2Ayi~σ2,

and you can do this for every i. Therefore, knowing the value of T you know the
value of Yi for every i. That is Y must be a function of T . We have reached this
conclusion assuming that T = t(Y ) is a sufficient statistic. However, this will lead
to a contradiction with the assumption of the question that two different values of y
is mapped to the same t. Therefore, T = t(Y ) with the given property cannot be a
sufficient statistic.

Remarks: The computation in part (d) shows that if the signal-to-noise ratio (energy per
bit to noise variance) is large enough, then the error probability decays to zero as n gets
large. In part (f), we show that no T = t(Y ) with t(ċ) that is not injective can be a sufficient
statistic. Of course, Y itself is always a sufficient statistic. This question shows something
interesting, that Y itself is a minimal sufficient statistic here. That is, there is no sufficient
statistic which is a function of Y but does not allow you to recover Y . [Compare this against
other sufficient statistics that you have seen before — is it always possible to recover Y
from T?]

8


