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Solution 1. Let E1, . . . , Ek be events with Pr(Ei) = pi. Let E =
⋃

iEi be the union of the
events. We know, by the union bound, that Pr(E) ≤

∑
i pi. By noting that the probability

of any event is at most 1, we can trivially improve the bound to Pr(E) ≤ min {1,
∑

i pi}.
For the rest of this problem, assume that the events E1, . . . , Ek are independent.

(a) With Ac denoting the complement of an event A, show that Pr(Ec) ≤ exp (−
∑

i pi).
Hint: 1− x ≤ exp(−x).

Solution: Simply following the hint, we have

Pr(Ec) = Pr

(⋂
i

Ec
i

)
=
∏
i

Pr(Ec
i ) =

∏
i

(1− pi) ≤
∏
i

exp (−pi) = exp

(
−
∑
i

pi

)
.

(b) For s ≥ 0, sketch the functions 1−exp(−s), and min{1, s}. Show that 1−exp(−s) ≥
(1− 1/e)min{1, s} for s ≥ 0.
Hint: Consider the two cases (i) s ∈ [0, 1], and (ii) s > 1.

Solution: The curves are sketched below.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

s

1− exp(−s)
min {1, s}

(1− 1/e)min {1, s}

(i) When s ∈ [0, 1], observe that the curves 1− exp(−s) and (1− 1/e)min{1, s} have
the same endpoints, namely 0 and 1 − 1/e. Since 1 − exp(−s) is strictly concave in
s, and (1− 1/e)min{1, s} = (1− 1/e)s is linear, we have 1− exp(−s) ≥ (1− 1/e)s.

(ii) For s > 1, observe that 1 − exp(−s) is strictly increasing in s, while (1 −
1/e)min{1, s} = (1 − 1/e) is constant, and they have the same value at s = 1.
Hence, we have 1− exp(−s) ≥ (1− 1/e), and we are done.

(c) Combine your results in (a) and (b) to show that, when E1, . . . , Ek are independent,(
1− 1

e

)
min{1, s} ≤ Pr

(⋃
i

Ei

)
≤ min{1, s},

with s =
∑

i Pr(Ei).

Solution: The union bound gives us Pr (
⋃

i Ei) ≤ s, and we also trivially have
Pr (

⋃
i Ei) ≤ 1, which gives us the upper bound. For the lower bound, we have

Pr (
⋃

i Ei) = 1− Pr (
⋂

iE
c
i ) ≥ 1− exp(−s) ≥ (1− 1/e)min{1, s}, from (a) and (b).



Moral of the story: For independent events, the trivially improved union bound,
min {1,

∑
i Pr(Ei)} is not only an upper bound to the probability of their union, but also

a constant factor approximation to it.

Solution 2. Suppose we design a communication system to send a k-bit message in the
following way:

Step 1: We represent a message by a binary sequence (b1, . . . , bk), each bi in {0, 1}.

Step 2: Pick two vectors v0 and v1 in Rr.

Step 3: The codeword for the message (b1, . . . , bk) is then given by the vector c =
(vb1 , . . . , vbk) (in Rn with n = kr). For example, let v0 = (1, 2, 3) and
v1 = (−1,−3,−2) in R3, then the codeword for the 3-bit message (0, 0, 1) is
(1, 2, 3︸ ︷︷ ︸

0

, 1, 2, 3︸ ︷︷ ︸
0

,−1,−3,−2︸ ︷︷ ︸
1

).

Step 4: The vector c is transmitted and received as Y = c + Z where Z is N (0, σ2In).
Write Y = (Y1, . . . , Yk) where each Yi is in Rr, similarly write Z = (Z1, . . . , Zk)
where each Zi is in Rr.

(a) Assuming all 2k messages are equally likely, show that the procedure: “for each
i = 1, . . . , k, let b̂i = argminb∈{0,1} ∥Yi − vb∥ and estimate the transmitted message as

(b̂1, . . . , b̂k)” minimizes the probability of error.

Solution: Let H be the random variable associated with the k-bit message, then this
rule is exactly the MAP rule obtained by solving argmaxbk∈{0,1}k fY1,...,Yk|H(y1, . . . , yk |
b1, . . . bk).

(b) With d2 = ∥v0− v1∥2, what is Pr
(
b̂i ̸= bi

)
(i.e., the probability that the ith bit of the

message is received incorrectly)? What is Pr(error) (i.e., the probability that some
bit is received incorrectly)? How does Pr(error) compare with min

{
1, kQ( d

2σ
)
}
?

Solution: The probability that the ith bit is received incorrectly is Pr
(
b̂i ̸= bi

)
=

Q
(

d
2σ

)
. Let Ei be the event that the ith bit is received incorrectly. Then, the

probability of error is Pr(error) = Pr (
⋃

i Ei). By Problem 1, this is upper bounded
by
∑

i Pr (Ei) = kQ( d
2σ
), and also trivially by 1, hence Pr(error) is upper bounded

by min
{
1, kQ( d

2σ
)
}
. Further, by Problem 1, we also have that it is lower bounded by(

1− 1
e

)
min

{
1, kQ( d

2σ
)
}
.

(c) With d2 = ∥v0 − v1∥2, consider a new system where v0 and v1 are replaced by the
scalars d/2 and −d/2. The codewords of the new system

(
±d

2
, . . . ,±d

2

)
are now in

Rk instead of Rkr. What can you say about the average energy E , average energy
per bit Eb, the bit error probabilities, and the message error probability of the new
system in terms of the corresponding quantities of the original system?

Solution: Observe that the new system is only a special case of the original system
with r = 1. Consider a codeword c = (vb1 , . . . , vbk) from the original system, with

energy ∥c∥2 =
∑k

i=1 ∥vbi∥2. Clearly, this quantity only depends on ∥v0∥2, ∥v1∥2, and
the number of 0’s and 1’s in b1, . . . , bk, and not explicitly on r. The average energy
is thus minimized by a set of codewords that is centered at the origin and minimizes
∥v0∥2+ ∥v1∥2, which is satisfied by the choice of the scalars d/2 and −d/2. Thus, the
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average energy of the new system is at most that of the original system. Since the
number of bits is unchanged, the average energy per bit of the new system is also at
most that of the original system. The message error probabililty only depends on the
geometry of the codewords, which remains unchanged.

(d) Suppose we need to send k bits (e.g., k = 100) using a system as above, and we
require the message error probability to be at most α (e.g., α = 10−2). Suppose a1
and a2 satisfy Q(a1) = α

k
and (1− 1/e)Q(a2) = α

k
. Show that if d/(2σ) < a2, the

error probability requirement cannot be met. What will happen if d/(2σ) ≥ a1?

Solution: If a2 > d/(2σ), then, from (c),

Pr(error) ≥
(
1− 1

e

)
min

{
1, kQ

(
d

2σ

)}
= min

{(
1− 1

e

)
,

(
1− 1

e

)
kQ

(
d

2σ

)}
> min

{(
1− 1

e

)
,

(
1− 1

e

)
kQ (a2)

}
= min

{(
1− 1

e

)
, α

}
.

Hence, for sufficiently small α (i.e., smaller than 1−1/e ≈ 0.63), we have Pr(error) >
α, i.e., the error probability requirement cannot be met. If a1 ≤ d/(2σ), from (c),

Pr(error) ≤ min

{
1, kQ

(
d

2σ

)}
≤ min {1, kQ (a1)}
= min {1, α} ≤ α,

i.e., the error probability requirement is met.

Moral: (1) If the message is sent ‘bit by bit’, as in the system described in the beginning
of the problem, one may as well use the simpler system in (c). (2) In a system designed as
above, the minimal possible value of (d/2σ)2 lies between a22 and a21. (Note that (d/2σ)2

equals Eb/σ2.)

Solution 3. Consider a communication system with 2n equally likely codewords ±
√
Eej,

j = 1, . . . , n where e1, . . . , en are the unit coordinate vectors in Rn. The receiver receives
Y = c+Z where c is one of these codewords and Z is N (0, σ2In). As the system is sending
k = log2(2n) bits, the choice E = σ2A log2(2n) results in an energy per bit Eb satisfying
Eb/σ2 = A.

The MAP rule for this setup is given by the following: find the j for which |Yj| is largest,
and decide that the codeword sign(Yj)

√
Eej was transmitted.

Consider the following alternative decoding method. Pick a threshold t = α
√
E with 0 ≤

α < 1. If there is exactly one j for which |Yj| > t, decide that the codeword sign(Yj)
√
Eej

was transmitted. If there is no j for which |Yj| > t or several j’s for which |Yj| > t, then
the decoder declares an error. Note that the error probability of the MAP decoder is upper
bounded by the error probability of this (suboptimal) decoder, so any upper bound on the
error probability of this decoder also upper bounds the probability of error of the MAP
rule.
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(a) Show that the probability of error (either by declaring an error, or by deciding on a
wrong codeword) of this decoder satisfies

Pr(error) ≤ Q

(
(1− α)

√
E
σ2

)
+ 2(n− 1)Q

(
α

√
E
σ2

)

< Q

(
(1− α)

√
E
σ2

)
+ 2kQ

(
α

√
E
σ2

)
.

Solution: Without loss of generality assume that
√
Ee1 is the transmitted codeword.

Then Y1 =
√
E + Z1, and Yj = Zj for j = 2, . . . , n. Our decoder will make an error

only if (i) Y1 ≤ t or (ii) −Y1 > t or (iii) |Yj| > t for some j = 2, . . . , n. Note that the
event (ii) already included in the event (i), so we only need to consider the union of
(i) and (iii). Probability of (i) is

Pr(
√
E + Z1 ≤ α

√
E) = Pr(−Z1 ≥ (1− α)

√
E) = Q((1− α)

√
E/σ2).

Probability of (iii) is

Pr
(
∪n

j=2{|Zj| > t}
)
≤

n∑
j=2

Pr(|Zj| > t) = (n− 1)2Q(t/σ) = 2(n− 1)Q(α
√
E/σ2).

Putting these bounds (i) and (iii) together, we find the desired upper bound to the
error probability.

(b) Recall that E = kAσ2. Show that the probability of error is further upper bounded
by

1
2
exp
(
−1

2
k(1− α)2A

)
+ 1

2
exp
(
−1

2
kα2A+ k ln 2

)
.

Also show that if A > 2 ln 2 there is an 0 < α < 1 for which the probability of error
approaches zero as k gets large.
Hint: Use (a) and Q(x) ≤ 1

2 exp(−x2/2).

Solution: Using (a), the upper bound on Q(·), and noting that 2k = exp(k ln 2), the
bound follows. Observe that the upper bound consists of the sum of two terms. The
first of these approaches zero as k gets large for any A > 0 and α < 1, so we only
need to find an α < 1 for which the second term, exp(−δk) (where δ = α2A/2− ln 2),
also approaches zero as k gets large. To that end it suffices to find α < 1 for which
δ > 0. Observe that δ > 0 is equivalent to α >

√
(2 ln 2)/A. If A > 2 ln 2, we have√

(2 ln 2)/A < 1 and thus there are α’s for which
√
(2 ln 2)/2 < α < 1.

Moral: If we are given an energy budget in the form energy/bit = Eb, and if this budget
satisfies Eb/σ2 > 2 ln 2, then we can, by taking k large enough, meet any desired error
probability requirement.

(c) Suppose that A > 2 ln 2. Show that

Pr(error) < exp

[
−1

8

(
1− 2 ln 2

A

)2

Ak

]
.

Hint: Use (b) and consider the choice α = 1
2

(
1 + 2 ln 2

A

)
. Don’t forget to verify that α < 1.

Solution: As A > 2 ln 2, the choice of α in the hint satisfies 1/2 ≤ α < 1
2
[1 + 1] = 1,

and is thus a valid choice for the bound in (b). Substituting this value of α in the
bound given in (b) we obtain the bound above.
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(d) For A = 4, 6, 8, 10, 12, what are the values k(A) of k that will make the upper bound
to the error probability in (c) less than 10−3?

Solution: All we need to do is to solve for k in −1
8

(
1 − 2 ln 2

A

)2
Ak ≤ ln(10−3), giving

k ≥ 24 ln(10)
A(1−(2 ln 2)/A)2

. For A = 4, 6, 8, 10, 12 we obtain (after rounding up to the next

integer) k = 33, 16, 11, 8, 6.

(e) For each of the five values of A in (d), consider a bit-by-bit communication system
(à la Problem 2 above) with Eb/σ2 = A that sends a k(A)-bit message. Find the
message error probabilities of these systems.

Solution: Recall that min{1, kQ(
√
A)} is a good approximation (within a factor

1 − 1/e) to the error probability of such systems. The exact value of the error
probability is 1 − (1 − Q(

√
A))k. Both these values are given in the table below,

rounded to three decimal digits.

A k(A) min{1, kQ(
√
A)} 1− (1−Q(

√
A))k

4 33 0.751 0.532
6 16 0.114 0.109
8 11 0.026 0.025
10 8 0.006 0.006
12 6 0.002 0.002

Note that the error probability of these bit-by-bit methods is much higher than 10−3

which is guaranteed by the method described above. The difference is especially
evident for low values of A.

Solution 4. Suppose c1, . . . , cm are codewords in Rn and all messages are equally likely.
When codeword i is sent, the receiver receives Y = (Y1, Y2) in R2n with either

(1) Y1 = ci + Z, Y2 = Z̃, or (2) Y1 = Z̃, Y2 = ci + Z,

with the two cases being equally probable. Here Z and Z̃ are independent, Z is N (0, σ2In),
and Z̃ is N (0, τ 2In). If the receiver had “side information” telling it which of (1) and (2)
occurred, then it could have decoded the message i based on the part of Y that equals
ci + Z. But the receiver does not have such information.
Let H = (i, b) where the binary value b indicates which of (1) and (2) took place.

(a) Consider the following rule to decide the value of H from the observation (y1, y2).

Find i1 = argmin ∥y1 − ci∥, let i2 = argmin ∥y2 − ci∥. Let d1 =
∥y1−ci1∥

2

σ2 + ∥y2∥2
τ2

and

d2 =
∥y2−ci2∥

2

σ2 + ∥y1∥2
τ2

. Decide

Ĥ =

{
(i1, 1) if d1 < d2,

(i2, 2) else.

Does this rule minimize Pr
(
Ĥ ̸= H

)
?

Solution: Yes, it is the map rule for H, i.e., it is exactly the rule obtained on com-
puting argmaxh fY1,Y2|H(y1, y2 | h), where h = (i, b).
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(b) Let î be the first component of Ĥ, i.e., î = i1 if d1 < d2 and î = i2 else. Does this
rule minimize Pr

(̂
i ̸= i

)
?

Solution: No, this is not the MAP rule for decoding i. Let I be the random variable
corresponding to the message i and B correspond to the “state” of the channel b,
then the MAP rule for decoding I is given by

argmax
i

fY1,Y2|I(y1, y2 | i)

= argmax
i

1

2

[
fY1,Y2|I,B(y1, y2 | i, (1)) + fY1,Y2|I,B(y1, y2 | i, (2))

]
= argmax

i
[fZ(y1 − ci)fZ̃(y2) + fZ̃(y1)fZ(y2 − ci)] .

Since Z and Z̃ are both normally distributed, this rule is the sum of two exponential
quantities, which does not give the same rule as (a). Hence, taking the first component
of Ĥ from (a) does not minimize Pr

(̂
i ̸= i

)
.

Let îo(y1, y2, b) be the MAP estimator of a receiver that somehow has access to the side
information as mentioned above, i.e., it is the decision made from the observation (y1, y2, b).

(c) Let b̂ be the second component of Ĥ as above, i.e., b̂ = 1 if d1 < d2 and b̂ = 2 else.
Justify the following inequalities:

Pr
(̂
io ̸= i

) (c0)

≤ Pr
(̂
i ̸= i

)
(c1)

≤ Pr
(
Ĥ ̸= H

)
(c2)
= Pr

(
b̂ ̸= b

)
+ Pr

(
b̂ = b and î ̸= i

)
(c3)
= Pr

(
b̂ ̸= b

)
+ Pr

(
b̂ = b and îo ̸= i

)
(c4)

≤ Pr
(
b̂ ̸= b

)
+ Pr

(̂
io ̸= i

)
.

Solution: (c0) follows from (b), since îo, being the MAP estimator which also has
access to the channel state b, cannot do any worse than the rule in (a).
(c1) follows from the fact that if î ̸= i, then it must be true that Ĥ ̸= H, since
H = (i, b).
(c2) follows by considering the event A = {b̂ ̸= b}. Clearly, Pr

(
Ĥ ̸= H

)
= Pr

(
Ĥ ̸=

H and b̂ ̸= b
)
+ Pr

(
Ĥ ̸= H and b̂ = b

)
. The first term is at most Pr

(
b̂ ̸= b

)
and the

second term is Pr
(
b̂ = b and î ̸= i

)
, since if b̂ = b, we have Ĥ ̸= H if and only if

î ̸= i.

Moral: The message error probabilities of the receiver with and without side information
differ at most by Pr

(
b̂ ̸= b

)
. If Pr

(
b̂ ̸= b

)
is small, then not much is lost by not having the

side information about the channel state.

(d) Suppose that H = (i, 1). Show that b̂ ̸= 1 only if there exists i′ ∈ {1, . . . ,m} with

∥Z∥2

σ2
+

∥Z̃∥2

τ 2
>

∥ci + Z∥2

τ 2
+

∥Z̃ − ci′∥2

σ2
.

Hint: How does the left-hand side compare to d1?
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Solution: Since b = 1, we have that Y1 = ci + Z and Y2 = Z̃. We have b̂ ̸= 1 exactly
when d1 ≥ d2. Suppose we have d1 ≥ d2. Then,

∥Z∥2

σ2
+

∥Z̃∥2

τ 2
=

∥Y1 − ci∥2

σ2
+

∥Y2∥2

τ 2

≥ argmin
i

∥Y1 − ci∥2

σ2
+

∥Y2∥2

τ 2

=
∥Y1 − ci1∥2

σ2
+

∥Y2∥2

τ 2
= d1

≥ d2 = argmin
i

∥Y2 − ci∥2

σ2
+

∥Y1∥2

τ 2

= argmin
i

∥Z̃ − ci∥2

σ2
+

∥ci + Z∥2

τ 2
,

i.e., there must exist some i′ ∈ {1, . . . ,m} such that ∥Z∥2
σ2 + ∥Z̃∥2

τ2
> ∥ci+Z∥2

τ2
+

∥Z̃−ci′∥2
σ2 .

(e) From now on, suppose σ = τ . Use the union bound to upper bound Pr
(
b̂ ̸= 1 | H =

(i, 1)
)
by
∑m

i′=1Q

(√
∥ci∥2+∥ci′∥2

4σ2

)
.

Solution: From part (d), taking σ = τ , given H = (i, 1), we have b̂ ̸= 1 only if there
exists an i′ ∈ {1, . . . ,m} such that ∥Z∥2 + ∥Z̃∥2 > ∥ci +Z∥2 + ∥Z̃ − ci′∥2. Hence, by
the union bound, we have

Pr
(
b̂ ̸= 1 | H = (i, 1)

)
= Pr

(
m⋃

i′=1

∥Z∥2 + ∥Z̃∥2 > ∥ci + Z∥2 + ∥Z̃ − ci′∥2
)

≤
m∑

i′=1

Pr
(
∥Z∥2 + ∥Z̃∥2 > ∥ci + Z∥2 + ∥Z̃ − ci′∥2

)
.

To obtain the desired bound, it suffices to show that

Pr
(
∥Z∥2 + ∥Z̃∥2 > ∥ci + Z∥2 + ∥Z̃ − ci′∥2

)
≤ Q

(√
∥ci∥2 + ∥ci′∥2

4σ2

)
.

This follows immediately by simplifying the event on the left-hand side, as

∥Z∥2 + ∥Z̃∥2 > ∥ci + Z∥2 + ∥Z̃ − ci′∥2

⇐⇒ ∥Z∥2 + ∥Z̃∥2 > ∥ci∥2 + ∥Z∥2 + 2⟨ci, Z⟩+ ∥Z̃∥2 + ∥ci′∥2 − 2⟨ci′ , Z̃⟩
⇐⇒ 2⟨ci′ , Z̃⟩ − 2⟨ci, Z⟩ > ∥ci∥2 + ∥ci′∥2.

Observing that 2⟨ci′ , Z̃⟩ − 2⟨ci, Z⟩ is a normal random variable with mean 0 and
variance 4σ2(∥ci∥2 + ∥ci′∥2), we are done.

(f) Assume that ∥ci∥ =
√
E for all i ∈ {1, . . . ,m} and Eb

σ2 > 4 ln 2 where Eb is the energy

per bit. Use (c) and (e) to show that Pr
(̂
i ̸= i

)
− Pr

(̂
io ̸= i

)
approaches 0 as m

grows.
Hint: What happens to Pr

(
b̂ ̸= b

)
as m grows?

Solution: By (c), we have that Pr
(̂
i ̸= i

)
−Pr

(̂
io ̸= i

)
is at most Pr

(
b̂ ̸= b

)
, which, by
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symmetry, is equal to Pr
(
b̂ ̸= 1 | H = (i, 1)

)
Hence, by (e), it is enough to show that∑m

i′=1Q

(√
∥ci∥2+∥ci′∥2

4σ2

)
goes to 0 as m goes to infinity. This follows immediately,

using the fact that ∥ci∥ =
√
E =

√
Eb log2m for all i, as

m∑
i′=1

Q

(√
∥ci∥2 + ∥ci′∥2

4σ2

)
= mQ

(√
Eb log2m

2σ2

)

≤ 1

2
exp

(
lnm− Eb log2m

4σ2

)
=

1

2
exp

[
log2m

(
ln 2− Eb

4σ2

)]
.

Takeaways from theory for the implementation.

1. The goal of Problem 1 is to show that the union bound, while it is an upper bound, is
in fact a good approximation, since it is only a constant factor of 1− 1/e away from
the actual error probability. This gives us a mathematical tool to effectively analyze
the systems that we design.

2. The goal of Problems 2 and 3 is to provide two possible coding schemes for converting
bits into codewords for transmission over the channel. Problem 2 gives a bit-by-bit
approach, and Problem 3 describes a biorthgonal code. Our analysis shows that using
a bit-by-bit communication system may not be the best idea when the energy is
required to be small, as seen in Problem 3(e) — we need significantly more energy to
obtain the same error probability when doing so as compared to a more clever design
such as the biorthogonal code.

3. Note that so far, we assumed that our channel was an AWGN channel. The channel
over which the communication is to take place in the implementation is not simple
AWGN, but it can be thought of as two parallel AWGN channels, where only one
of them sees the actual input; the receiver receives both outputs and does not know
which of the parallel channels actually had the correct input. Problem 4 deals with
this channel specifically. The MAP rule for decoding over this channel involves com-
puting sums of exponentials of various terms, and cannot be obtained as an extension
of a decoding scheme for the simple AWGN channel. The scheme given in Problem
4(a) describes how the decoding can be done with minimal additional effort over a
simple AWGN channel (compute the MAP estimates for each of the parallel chan-
nels, compute d1 and d2, which are simply sums of distances, and compare them).
Though this is not the optimal rule which minimizes the message error probability, it
is considerably simpler than the MAP rule to decode the message, and has an error
probability that is asympotically equal to the optimal rule which also has access to
the side information. Hence, implementing this biorthogonal code with the decoding
rule mentioned in Problem 4(a) is expected to give a working implementation (that
also meets the channel constraints on the energy and number of samples transmitted,
but this is to be checked).
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