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Problem 1. Let E1, . . . , Ek be events with Pr(Ei) = pi. Let E =
⋃

i Ei be the union of the
events. We know, by the union bound, that Pr(E) ≤

∑
i pi. By noting that the probability

of any event is at most 1, we can trivially improve the bound to Pr(E) ≤ min {1,
∑

i pi}.
For the rest of this problem, assume that the events E1, . . . , Ek are independent.

(a) With Ac denoting the complement of an event A, show that Pr(Ec) ≤ exp (−
∑

i pi).
Hint: 1− x ≤ exp(−x).

(b) For s ≥ 0, sketch the functions 1−exp(−s), and min{1, s}. Show that 1−exp(−s) ≥
(1− 1/e)min{1, s} for s ≥ 0.
Hint: Consider the two cases (i) s ∈ [0, 1], and (ii) s > 1.

(c) Combine your results in (a) and (b) to show that, when E1, . . . , Ek are independent,(
1− 1

e

)
min{1, s} ≤ Pr

(⋃
i

Ei

)
≤ min{1, s},

with s =
∑

i Pr(Ei).

Moral of the story: For independent events, the trivially improved union bound,
min {1,

∑
i Pr(Ei)} is not only an upper bound to the probability of their union, but also

a constant factor approximation to it.

Problem 2. Suppose we design a communication system to send a k-bit message in the
following way:

Step 1: We represent a message by a binary sequence (b1, . . . , bk), each bi in {0, 1}.

Step 2: Pick two vectors v0 and v1 in Rr.

Step 3: The codeword for the message (b1, . . . , bk) is then given by the vector c =
(vb1 , . . . , vbk) (in Rn with n = kr). For example, let v0 = (1, 2, 3) and
v1 = (−1,−3,−2) in R3, then the codeword for the 3-bit message (0, 0, 1) is
(1, 2, 3︸ ︷︷ ︸

0

, 1, 2, 3︸ ︷︷ ︸
0

,−1,−3,−2︸ ︷︷ ︸
1

).

Step 4: The vector c is transmitted and received as Y = c + Z where Z is N (0, σ2In).
Write Y = (Y1, . . . , Yk) where each Yi is in Rr, similarly write Z = (Z1, . . . , Zk)
where each Zi is in Rr.

(a) Assuming all 2k messages are equally likely, show that the procedure: “for each
i = 1, . . . , k, let b̂i = argminb∈{0,1} ∥Yi − vb∥ and estimate the transmitted message as

(b̂1, . . . , b̂k)” minimizes the probability of error.



(b) With d2 = ∥v0− v1∥2, what is Pr
(
b̂i ̸= bi

)
(i.e., the probability that the ith bit of the

message is received incorrectly)? What is Pr(error) (i.e., the probability that some
bit is received incorrectly)? How does Pr(error) compare with min

{
1, kQ( d

2σ
)
}
?

(c) With d2 = ∥v0 − v1∥2, consider a new system where v0 and v1 are replaced by the
scalars d/2 and −d/2. The codewords of the new system

(
±d

2
, . . . ,±d

2

)
are now in

Rk instead of Rkr. What can you say about the average energy E , average energy
per bit Eb, the bit error probabilities, and the message error probability of the new
system in terms of the corresponding quantities of the original system?

(d) Suppose we need to send k bits (e.g., k = 100) using a system as above, and we
require the message error probability to be at most α (e.g., α = 10−2). Suppose a1
and a2 satisfy Q(a1) = α

k
and (1− 1/e)Q(a2) = α

k
. Show that if d/(2σ) < a2, the

error probability requirement cannot be met. What will happen if d/(2σ) ≥ a1?

Moral: (1) If the message is sent ‘bit by bit’, as in the system described in the beginning
of the problem, one may as well use the simpler system in (c). (2) In a system designed as
above, the minimal possible value of (d/2σ)2 lies between a22 and a21. (Note that (d/2σ)2

equals Eb/σ2.)

Problem 3. Consider a communication system with 2n equally likely codewords ±
√
Eej,

j = 1, . . . , n where e1, . . . , en are the unit coordinate vectors in Rn. The receiver receives
Y = c+Z where c is one of these codewords and Z is N (0, σ2In). As the system is sending
k = log2(2n) bits, the choice E = σ2A log2(2n) results in an energy per bit Eb satisfying
Eb/σ2 = A.

The MAP rule for this setup is given by the following: find the j for which |Yj| is largest,
and decide that the codeword sign(Yj)

√
Eej was transmitted.

Consider the following alternative decoding method. Pick a threshold t = α
√
E with 0 ≤

α < 1. If there is exactly one j for which |Yj| > t, decide that the codeword sign(Yj)
√
Eej

was transmitted. If there is no j for which |Yj| > t or several j’s for which |Yj| > t, then
the decoder declares an error. Note that the error probability of the MAP decoder is upper
bounded by the error probability of this (suboptimal) decoder, so any upper bound on the
error probability of this decoder also upper bounds the probability of error of the MAP
rule.

(a) Show that the probability of error (either by declaring an error, or by deciding on a
wrong codeword) of this decoder satisfies

Pr(error) ≤ Q

(
(1− α)

√
E
σ2

)
+ 2(n− 1)Q

(
α

√
E
σ2

)

< Q

(
(1− α)

√
E
σ2

)
+ 2kQ

(
α

√
E
σ2

)
.

(b) Recall that E = kAσ2. Show that the probability of error is further upper bounded
by

1
2
exp
(
−1

2
k(1− α)2A

)
+ 1

2
exp
(
−1

2
kα2A+ k ln 2

)
.
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Also show that if A > 2 ln 2 there is an 0 < α < 1 for which the probability of error
approaches zero as k gets large.
Hint: Use (a) and Q(x) ≤ 1

2 exp(−x2/2).

Moral: If we are given an energy budget in the form energy/bit = Eb, and if this budget
satisfies Eb/σ2 > 2 ln 2, then we can, by taking k large enough, meet any desired error
probability requirement.

(c) Suppose that A > 2 ln 2. Show that

Pr(error) < exp

[
−1

8

(
1− 2 ln 2

A

)2

Ak

]
.

Hint: Use (b) and consider the choice α = 1
2

(
1 + 2 ln 2

A

)
. Don’t forget to verify that α < 1.

(d) For A = 4, 6, 8, 10, 12, what are the values k(A) of k that will make the upper bound
to the error probability in (c) less than 10−3?

(e) For each of the five values of A in (d), consider a bit-by-bit communication system
(à la Problem 2 above) with Eb/σ2 = A that sends a k(A)-bit message. Find the
message error probabilities of these systems.

Problem 4. Suppose c1, . . . , cm are codewords in Rn and all messages are equally likely.
When codeword i is sent, the receiver receives Y = (Y1, Y2) in R2n with either

(1) Y1 = ci + Z, Y2 = Z̃, or (2) Y1 = Z̃, Y2 = ci + Z,

with the two cases being equally probable. Here Z and Z̃ are independent, Z is N (0, σ2In),
and Z̃ is N (0, τ 2In). If the receiver had “side information” telling it which of (1) and (2)
occurred, then it could have decoded the message i based on the part of Y that equals
ci + Z. But the receiver does not have such information.
Let H = (i, b) where the binary value b indicates which of (1) and (2) took place.

(a) Consider the following rule to decide the value of H from the observation (y1, y2).

Find i1 = argmin ∥y1 − ci∥, let i2 = argmin ∥y2 − ci∥. Let d1 =
∥y1−ci1∥

2

σ2 + ∥y2∥2
τ2

and

d2 =
∥y2−ci2∥

2

σ2 + ∥y1∥2
τ2

. Decide

Ĥ =

{
(i1, 1) if d1 < d2,

(i2, 2) else.

Does this rule minimize Pr
(
Ĥ ̸= H

)
?

(b) Let î be the first component of Ĥ, i.e., î = i1 if d1 < d2 and î = i2 else. Does this
rule minimize Pr

(̂
i ̸= i

)
?

Let îo(y1, y2, b) be the MAP estimator of a receiver that somehow has access to the side
information as mentioned above, i.e., it is the decision made from the observation (y1, y2, b).
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(c) Let b̂ be the second component of Ĥ as above, i.e., b̂ = 1 if d1 < d2 and b̂ = 2 else.
Justify the following inequalities:

Pr
(̂
io ̸= i

) (c0)

≤ Pr
(̂
i ̸= i

)
(c1)

≤ Pr
(
Ĥ ̸= H

)
(c2)
= Pr

(
b̂ ̸= b

)
+ Pr

(
b̂ = b and î ̸= i

)
(c3)
= Pr

(
b̂ ̸= b

)
+ Pr

(
b̂ = b and îo ̸= i

)
(c4)

≤ Pr
(
b̂ ̸= b

)
+ Pr

(̂
io ̸= i

)
.

Moral: The message error probabilities of the receiver with and without side information
differ at most by Pr

(
b̂ ̸= b

)
. If Pr

(
b̂ ̸= b

)
is small, then not much is lost by not having the

side information about the channel state.

(d) Suppose that H = (i, 1). Show that b̂ ̸= 1 only if there exists i′ ∈ {1, . . . ,m} with

∥Z∥2

σ2
+

∥Z̃∥2

τ 2
>

∥ci + Z∥2

τ 2
+

∥Z̃ − ci′∥2

σ2
.

Hint: How does the left-hand side compare to d1?

(e) From now on, suppose σ = τ . Use the union bound to upper bound Pr
(
b̂ ̸= 1 | H =

(i, 1)
)
by
∑m

i′=1Q

(√
∥ci∥2+∥ci′∥2

4σ2

)
.

(f) Assume that ∥ci∥ =
√
E for all i ∈ {1, . . . ,m} and Eb

σ2 > 4 ln 2 where Eb is the energy

per bit. Use (c) and (e) to show that Pr
(̂
i ̸= i

)
− Pr

(̂
io ̸= i

)
approaches 0 as m

grows.
Hint: What happens to Pr

(
b̂ ̸= b

)
as m grows?
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Takeaways from theory for the implementation.

1. The goal of Problem 1 is to show that the union bound, while it is an upper bound, is
in fact a good approximation, since it is only a constant factor of 1− 1/e away from
the actual error probability. This gives us a mathematical tool to effectively analyze
the systems that we design.

2. The goal of Problems 2 and 3 is to provide two possible coding schemes for converting
bits into codewords for transmission over the channel. Problem 2 gives a bit-by-bit
approach, and Problem 3 describes a biorthgonal code. Our analysis shows that using
a bit-by-bit communication system may not be the best idea when the energy is
required to be small, as seen in Problem 3(e) — we need significantly more energy to
obtain the same error probability when doing so as compared to a more clever design
such as the biorthogonal code.

3. Note that so far, we assumed that our channel was an AWGN channel. The channel
over which the communication is to take place in the implementation is not simple
AWGN, but it can be thought of as two parallel AWGN channels, where only one
of them sees the actual input; the receiver receives both outputs and does not know
which of the parallel channels actually had the correct input. Problem 4 deals with
this channel specifically. The MAP rule for decoding over this channel involves com-
puting sums of exponentials of various terms, and cannot be obtained as an extension
of a decoding scheme for the simple AWGN channel. The scheme given in Problem
4(a) describes how the decoding can be done with minimal additional effort over a
simple AWGN channel (compute the MAP estimates for each of the parallel chan-
nels, compute d1 and d2, which are simply sums of distances, and compare them).
Though this is not the optimal rule which minimizes the message error probability, it
is considerably simpler than the MAP rule to decode the message, and has an error
probability that is asympotically equal to the optimal rule which also has access to
the side information. Hence, implementing this biorthogonal code with the decoding
rule mentioned in Problem 4(a) is expected to give a working implementation (that
also meets the channel constraints on the energy and number of samples transmitted,
but this is to be checked).
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