ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

PROBLEM 1. Note that $E_0 = E_1 \cup E_2 \cup E_3$.

- (a) (1) For disjoint events, $P(E_0) = P(E_1) + P(E_2) + P(E_3)$, so $P(E_0) = 3/4$.
	- (2) For independent events, $1 P(E_0)$ is the probability that none of the events occur, which is the product of the probabilities that each one doesn't occur. Thus $1 - P(E_0) = (3/4)^3$ and $P(E_0) = 37/64$.
	- (3) If $E_1 = E_2 = E_3$, then $E_0 = E_1$ and $P(E_0) = 1/4$.
- (b) (1) From the Venn diagram in Fig. 1, $P(E_0)$ is clearly maximized when the events are disjoint, so max $P(E_0) = 3/4$.

Figure 1: Venn Diagram for problem 1 (b)(1)

(2) The intersection of each pair of sets has probability $1/16$. As seen in Fig. 2. $P(E_0)$ is maximized if all these pairwise intersections are identical, in which case $P(E_0) = 3(1/4 - 1/16) + 1/16 = 5/8$. One can also use the formula $P(E_0) =$ $P(E_1)+P(E_2)+P(E_3)-P(E_1\cap E_2)-P(E_1\cap E_3)-P(E_2\cap E_3)+P(E_1\cap E_2\cap E_3),$ and notice that all the terms except the last is fixed by the problem, and the last term cannot be made more than $\min_{i,j} P(E_i \cap E_j) = 1/16$.

Figure 2: Venn Diagram for problem 1 (b)(2)

- (c) Same considerations as in (b)(2) yields the upper bound $P(E_0) \leq 3p-2p^2$ As $P(E_0)$ 1, we find that $p > 1/2$.
- PROBLEM 2. (a) Since the die is fair, the probability of a toss being 6 is $1/6$. Then, $P(N_1 = k)$ is simply the probability that the child does not observe 6 for the first $k-1$ tosses and observes 6 at k^{th} toss. Hence, $P(N_1 = k) = (5/6)^{k-1}1/6$,
- (b) $E[N_1] = \sum_{k=1}^{\infty} P(N_1 = k)k = 1/6 \sum_{k=1}^{\infty} (5/6)^{k-1}k = 6^2.1/6 = 6$. Here, we used the hint $\sum_{k=1}^{\infty} x^{k-1}k = 1/(1-x)^2$.
- (c) The only way $\tilde{N} = k, k \geq m$ is when (i) k^{th} toss is a 6 and (ii) in the previous k − 1 tosses exactly $m-1$ 6's and $k-m$ non-6's are observed. There are $\binom{k-1}{m-1}$ $\binom{k-1}{m-1}$ distinct ways for (ii) to happen each with probability $(5/6)^{k-m}(1/6)^m$. Consequently, $P(\tilde{N} = k) = \binom{k-1}{m-1}$ $\binom{k-1}{m-1}$ (5/6)^{k-m}(1/6)^m

To find $E[\tilde{N}]$, consider new random variables $N_i, i \in \{1, 2, ..., m\}$ which denotes the number of tosses after the $i - 1th 6$ is observed until the $ith 6$ occurs. Since $\tilde{N} = N_1 + N_2 + \ldots + N_m$, and N_i 's are independent and identically distributed, we have $E[N] = mE[N_1] = 6m$.

(d) Using Bayes' Rule, we have

$$
P(\text{Fair} \mid N = k) = \frac{P(N = k \mid \text{Fair}) P(\text{Fair})}{P(N = k \mid \text{Loaded}) P(\text{Loaded}) + P(N = k \mid \text{Fair}) P(\text{Fair})}
$$

$$
= \frac{(5/6)^{k-1} 1/6}{(5/6)^{k-1} 1/6 + (1 - 1/6^5)^{k-1} 1/6^5}
$$

The statement $P(\text{Fair} \mid N = k) < P(\text{Loaded} \mid N = k)$ is equivalent to

$$
(5/6)^{k-1}1/6 < (1 - 1/6^5)^{k-1}1/6^5
$$
\n
$$
(k-1)\ln(6/5) + \ln(6) > 5\ln(6) + (k-1)\ln(6^5/6^5 - 1)
$$
\n
$$
(k-1)\ln\left(\frac{6(6^5 - 1)}{5.6^5}\right) + \ln(6) > 5\ln(6)
$$
\n
$$
k > 4\ln(6/(\ln(6(6^5 - 1)) - \ln(5.6^5)) + 1 \approx 40.3
$$

• An alternative way to find $P(\tilde{N} = k)$:

Recalling that $\tilde{N} = N_1 + N_2 + \ldots + N_m$, and N_i 's are i.i.d, the distribution of \tilde{N} is the m-fold convolution of the distribution of N_1 . To find the m-fold convolution, we can take the easier z-transform approach. (For convenience, let $p = 1/6$ and $q = 5/6$)

Define the z-transform of P_{N_1} as $\psi_{N_1}(z) = E[z^{-N_1}] = \sum_{k=1}^{\infty} P(N_1 = k)z^{-k} =$ $\sum_{k=1}^{\infty} pq^{k-1}z^{-k}$

$$
=\frac{pz^{-1}}{1-qz^{-1}}
$$

As $\tilde{N} = N_1 + \cdots + N_m$, the z-transform of \tilde{N} will be

$$
\psi_{\tilde{N}}(z) = E[z^{-(N_1 + N_2 + \dots + N_m)}] = E[z^{-N_1}]E[z^{-N_2}] \dots E[z^{-N_1 m}] = (\psi_{N_1}(z))^m \tag{1}
$$

$$
= \left(\frac{pz^{-1}}{1-qz^{-1}}\right)^m = p^m z^{-m} \frac{1}{(1-qz^{-1})^m}
$$

From geometric series, we know that $\sum_{k=0}^{\infty} r^k = 1/1 - r$. Taking the derivative of both sides with respect to $r, m-1$ times, one can obtain

$$
\sum_{k=m-1}^{\infty} \frac{k!}{(k-m+1)!} r^{k-m+1} = \sum_{k=0}^{\infty} \frac{(k+m-1)!}{k!} r^k = (m-1)! \frac{1}{(1-r)^m}
$$

Thus,

$$
\sum_{k=0}^{\infty} {k+m-1 \choose m-1} r^{k} = \frac{1}{(1-r)^{m}}
$$

Here, if we substitute r with qz^{-1} , we get

$$
\sum_{k=0}^{\infty} {k+m-1 \choose m-1} (qz^{-1})^k = \frac{1}{(1-qz^{-1})^m}
$$

and substituting in (1), we obtain

$$
\psi_{\tilde{N}}(z) = \sum_{k=0}^{\infty} {k+m-1 \choose m-1} q^k z^{-(m+k)} p^m = \sum_{k=m}^{\infty} {k-1 \choose m-1} q^{k-m} z^{-k} p^m
$$

Since by definition, $\psi_{\tilde{N}}(z) = \sum_{k=m}^{\infty} P(\tilde{N} = k) z^{-k}$, it can be seen that $P(\tilde{N} = k) = \binom{k-1}{m-1}$ $_{m-1}^{k-1}$) $q^{k-m}p^m$, $\forall k \geq m$

PROBLEM 3. Since A, B, C, D form a Markov chain their probability distribution is given by

$$
p(a)p(b|a)p(c|b)p(d|c)
$$
\n⁽²⁾

- (a) Yes: Summing (2) over d shows that A, B, C have the probability distribution $p(a)p(b|a)p(c|b).$
- (b) Yes: The reverse of a Markov chain is also a Markov chain. Applying this to A, B, C, D and using part (a) we get that D, C, B is a Markov chain. Reversing again we get the desired result.
- (c) Yes: Since A, B, C, D is a Markov chain, given C, D is independent of B, and thus $p(d|c) = p(d|(b, c))$. So (2) can be written as

$$
p(a, (b, c), d) = p(a)p((b, c)|a)p(d|(b, c)).
$$

PROBLEM 4. No. Take for example $A = D$ and let A be independent of the pair (B, C) . Then both A, B, C and B, C, A (same as B, C, D) are Markov chains. But A, B, C, D is not: A is not independent of D when B and C are given.

PROBLEM 5.

(a)

$$
E[X+Y] = \sum_{x,y} (x+y)P_{XY}(x,y)
$$

=
$$
\sum_{x,y} xP_{XY}(x,y) + \sum_{x,y} yP_{XY}(x,y)
$$

=
$$
\sum_{x} xP_X(x) + \sum_{y} yP_Y(y)
$$

=
$$
E[X] + E[Y].
$$

Note that independence is not necessary here and that the argument extends to nondiscrete variables if the expectation exists.

(b)

$$
E[XY] = \sum_{x,y} xy P_{XY}(x,y)
$$

=
$$
\sum_{x,y} xy P_X(x) P_Y(y)
$$

=
$$
\sum_x x P_X(x) \sum_y y P_Y(y)
$$

=
$$
E[X] E[Y].
$$

Note that the statistical independence was used on the second line. Let X and Y take on only the values ± 1 and 0. An example of uncorrelated but dependent variables is

$$
P_{XY}(1,0) = P_{XY}(0,1) = P_{XY}(-1,0) = P_{XY}(0,-1) = \frac{1}{4}.
$$

An example of correlated and dependent variables is

$$
P_{XY}(1,1) = P_{XY}(-1,-1) = \frac{1}{2}.
$$

(c) Using (a), we have

$$
\sigma_{X+Y}^2 = E\left[(X - E[X] + Y - E[Y])^2 \right]
$$

=
$$
E[(X - E[X])^2] + 2E[(X - E[X])(Y - E[Y])] + E[(Y - E[Y])^2].
$$

The middle term, from (a), is $2(E[XY] - E[X]E[Y])$. For uncorrelated variables that is zero, leaving us with $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$.

PROBLEM 6. We solve the problem for a general vehicle with n wheels.

- (a) Out of n! possible orderings $(n-1)!$ has the tyre 1 in its original place. Thus tyre 1 is installed in its original position with probability $1/n$.
- (b) All tyres end up in their original position in only 1 of the n! orders. Thus the probability of this event is $1/n!$.
- (c) Let X_i be the indicator random variable that tyre i is installed in its original position, so that the number of tyres installed in their original positions is $N = \sum_{i=1}^{n} X_i$. By (a), $E[X_i] = 1/n$. By the linearity of expectation, $E[N] = n(1/n) = 1$. Note that the linearity of the expectation holds even if the X_i 's are not independent (as it is in this case).
- (e) Let A_i be the event that the *i*th tyre remains in its original position. Then, the event we are interested in is the complement of the event $\bigcup_i A_i$ and thus has probability $1 - \Pr(\bigcup_i A_i)$. Furthermore, by the inclusion/exclusion formula,

$$
Pr(\bigcup_i A_i) = \sum_i Pr(A_i) - \sum_{i_1 < i_2} Pr(A_{i_1} \cap A_{i_2}) + \sum_{i_1 < i_2 < i_3} P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) - \dots
$$

The *j*th sum above consists of $\binom{n}{i}$ ⁿ) terms, each term having the value $P(A_1 \cap \cdots \cap A_j)$. Note that this is the probability of the event that tyres 1 through j have remained in their original positions, and equals $(n - j)!/n!$. Consequently,

$$
\Pr\left(\bigcup_{i} A_{i}\right) = \sum_{j=1}^{n} (-1)^{j-1} {n \choose j} \frac{(n-j)!}{n!} = \sum_{j=1}^{n} (-1)^{j-1} \frac{1}{j!},
$$

and the event that no tyre remains in its original position has probability

$$
1 - \Pr\left(\bigcup_i A_i\right) = \sum_{j=0}^n \frac{(-1)^j}{j!}.
$$

(For the case $n = 4$, the value is $3/8$.)

PROBLEM 7.

(a) Let A_i denote the event that $X_i \neq X$. The event that X does not appear in the inventory is thus

$$
A = A_1 \cap \dots \cap A_n.
$$

Note that the events A_1, \ldots, A_n are not independent—because they involve the common random variable X . However, they become independent when conditioned on the value of X, with $P(A_i|X=x) = 1 - p(x)$. Thus,

$$
P(A|X = x) = (1 - p(x))^n.
$$

Consequently $P(A) = \sum_{x} p(x)(1 - p(x))^n$.

- (b) With p the uniform distribution on n items, the above value for $P(A)$ equals (1 − $1/n)^n$.
- (c) For *n* large, $(1 1/n)^n$ approaches $1/e \approx 37\%$.