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Problem 1. Note that E0 = E1 ∪ E2 ∪ E3.

(a) (1) For disjoint events, P (E0) = P (E1) + P (E2) + P (E3), so P (E0) = 3/4.

(2) For independent events, 1 − P (E0) is the probability that none of the events
occur, which is the product of the probabilities that each one doesn’t occur.
Thus 1− P (E0) = (3/4)3 and P (E0) = 37/64.

(3) If E1 = E2 = E3, then E0 = E1 and P (E0) = 1/4.

(b) (1) From the Venn diagram in Fig. 1, P (E0) is clearly maximized when the events
are disjoint, so maxP (E0) = 3/4.
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Figure 1: Venn Diagram for problem 1 (b)(1)

(2) The intersection of each pair of sets has probability 1/16. As seen in Fig. 2,
P (E0) is maximized if all these pairwise intersections are identical, in which case
P (E0) = 3 (1/4− 1/16) + 1/16 = 5/8. One can also use the formula P (E0) =
P (E1)+P (E2)+P (E3)−P (E1∩E2)−P (E1∩E3)−P (E2∩E3)+P (E1∩E2∩E3),
and notice that all the terms except the last is fixed by the problem, and the
last term cannot be made more than mini,j P (Ei ∩ Ej) = 1/16.
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Figure 2: Venn Diagram for problem 1 (b)(2)

(c) Same considerations as in (b)(2) yields the upper bound P (E0) ≤ 3p−2p2 As P (E0) =
1, we find that p ≥ 1/2.

Problem 2. (a) Since the die is fair, the probability of a toss being 6 is 1/6. Then,
P (N1 = k) is simply the probability that the child does not observe 6 for the first
k − 1 tosses and observes 6 at kth toss. Hence, P (N1 = k) = (5/6)k−11/6,



(b) E[N1] =
∑∞

k=1 P (N1 = k)k = 1/6
∑∞

k=1(5/6)
k−1k = 62.1/6 = 6. Here, we used the

hint
∑∞

k=1 x
k−1k = 1/(1− x)2.

(c) The only way Ñ = k, k ≥ m is when (i) kth toss is a 6 and (ii) in the previous
k − 1 tosses exactly m − 1 6’s and k − m non-6’s are observed. There are

(
k−1
m−1

)
distinct ways for (ii) to happen each with probability (5/6)k−m(1/6)m. Consequently,
P (Ñ = k) =

(
k−1
m−1

)
(5/6)k−m(1/6)m

To find E[Ñ ], consider new random variables Ni, i ∈ {1, 2, . . . ,m} which denotes
the number of tosses after the i − 1th 6 is observed until the ith 6 occurs. Since
Ñ = N1 + N2 + . . . + Nm, and Ni’s are independent and identically distributed, we
have E[Ñ ] = mE[N1] = 6m.

(d) Using Bayes’ Rule, we have

P (Fair | N = k) =
P (N = k | Fair)P (Fair)

P (N = k | Loaded)P (Loaded) + P (N = k | Fair)P (Fair)

=
(5/6)k−11/6

(5/6)k−11/6 + (1− 1/65)k−11/65

The statement P (Fair | N = k) < P (Loaded | N = k) is equivalent to

(5/6)k−11/6 < (1− 1/65)k−11/65

(k − 1)ln(6/5) + ln6 > 5ln6 + (k − 1)ln(65/65 − 1)

(k − 1)ln(
6(65 − 1)

5.65
) + ln6 > 5ln6

k > 4ln6/(ln(6(65 − 1))− ln(5.65)) + 1 ≈ 40.3

• An alternative way to find P (Ñ = k) :

Recalling that Ñ = N1 + N2 + . . . + Nm, and Ni’s are i.i.d, the distribution of Ñ is
the m-fold convolution of the distribution of N1. To find the m-fold convolution, we
can take the easier z-transform approach. (For convenience, let p = 1/6 and q = 5/6)

Define the z-transform of PN1 as ψN1(z) = E[z−N1 ] =
∑∞

k=1 P (N1 = k)z−k =∑∞
k=1 pq

k−1z−k

=
pz−1

1− qz−1

As Ñ = N1 + · · ·+Nm, the z-transform of Ñ will be

ψÑ(z) = E[z−(N1+N2+...+Nm)] = E[z−N1 ]E[z−N2 ] . . . E[z−N1m] = (ψN1(z))
m (1)

=

(
pz−1

1− qz−1

)m

= pmz−m 1

(1− qz−1)m

From geometric series, we know that
∑∞

k=0 r
k = 1/1 − r. Taking the derivative of

both sides with respect to r, m− 1 times, one can obtain

∞∑
k=m−1

k!

(k −m+ 1)!
rk−m+1 =

∞∑
k=0

(k +m− 1)!

k!
rk = (m− 1)!

1

(1− r)m
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Thus,
∞∑
k=0

(
k +m− 1

m− 1

)
rk =

1

(1− r)m

Here, if we substitute r with qz−1, we get

∞∑
k=0

(
k +m− 1

m− 1

)
(qz−1)k =

1

(1− qz−1)m

and substituting in (1), we obtain

ψÑ(z) =
∞∑
k=0

(
k +m− 1

m− 1

)
qkz−(m+k)pm =

∞∑
k=m

(
k − 1

m− 1

)
qk−mz−kpm

Since by definition, ψÑ(z) =
∑∞

k=m P (Ñ = k)z−k, it can be seen that

P (Ñ = k) =
(
k−1
m−1

)
qk−mpm,∀k ≥ m

Problem 3. Since A, B, C, D form a Markov chain their probability distribution is given
by

p(a)p(b|a)p(c|b)p(d|c) (2)

(a) Yes: Summing (2) over d shows that A, B, C have the probability distribution
p(a)p(b|a)p(c|b).

(b) Yes: The reverse of a Markov chain is also a Markov chain. Applying this to A, B,
C, D and using part (a) we get that D, C, B is a Markov chain. Reversing again we
get the desired result.

(c) Yes: Since A, B, C, D is a Markov chain, given C, D is independent of B, and thus
p(d|c) = p(d|(b, c)). So (2) can be written as

p(a, (b, c), d) = p(a)p((b, c)|a)p(d|(b, c)).

Problem 4. No. Take for example A = D and let A be independent of the pair (B,C).
Then both A, B, C and B, C, A (same as B, C, D) are Markov chains. But A, B, C, D
is not: A is not independent of D when B and C are given.

Problem 5.

(a)

E[X + Y ] =
∑
x,y

(x+ y)PXY (x, y)

=
∑
x,y

xPXY (x, y) +
∑
x,y

yPXY (x, y)

=
∑
x

xPX(x) +
∑
y

yPY (y)

= E[X] + E[Y ].

Note that independence is not necessary here and that the argument extends to non-
discrete variables if the expectation exists.
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(b)

E[XY ] =
∑
x,y

xyPXY (x, y)

=
∑
x,y

xyPX(x)PY (y)

=
∑
x

xPX(x)
∑
y

yPY (y)

= E[X]E[Y ].

Note that the statistical independence was used on the second line. Let X and Y take
on only the values ±1 and 0. An example of uncorrelated but dependent variables is

PXY (1, 0) = PXY (0, 1) = PXY (−1, 0) = PXY (0,−1) =
1

4
.

An example of correlated and dependent variables is

PXY (1, 1) = PXY (−1,−1) =
1

2
.

(c) Using (a), we have

σ2
X+Y = E

[
(X − E[X] + Y − E[Y ])2

]
= E[(X − E[X])2] + 2E[(X − E[X])(Y − E[Y ])] + E[(Y − E[Y ])2].

The middle term, from (a), is 2(E[XY ]−E[X]E[Y ]). For uncorrelated variables that
is zero, leaving us with σ2

X+Y = σ2
X + σ2

Y .

Problem 6. We solve the problem for a general vehicle with n wheels.

(a) Out of n! possible orderings (n− 1)! has the tyre 1 in its original place. Thus tyre 1
is installed in its original position with probability 1/n.

(b) All tyres end up in their original position in only 1 of the n! orders. Thus the
probability of this event is 1/n!.

(c) Let Xi be the indicator random variable that tyre i is installed in its original position,
so that the number of tyres installed in their original positions is N =

∑n
i=1Xi.

By (a), E[Xi] = 1/n. By the linearity of expectation, E[N ] = n(1/n) = 1. Note that
the linearity of the expectation holds even if the Xi’s are not independent (as it is in
this case).

(e) Let Ai be the event that the ith tyre remains in its original position. Then, the event
we are interested in is the complement of the event

⋃
iAi and thus has probability

1− Pr(
⋃

iAi). Furthermore, by the inclusion/exclusion formula,

Pr(
⋃
i

Ai) =
∑
i

Pr(Ai)−
∑
i1<i2

Pr(Ai1 ∩ Ai2) +
∑

i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)− . . . .

The jth sum above consists of
(
n
j

)
terms, each term having the value P (A1∩· · ·∩Aj).

Note that this is the probability of the event that tyres 1 through j have remained
in their original positions, and equals (n− j)!/n!. Consequently,

Pr
(⋃

i

Ai

)
=

n∑
j=1

(−1)j−1

(
n

j

)
(n− j)!

n!
=

n∑
j=1

(−1)j−11/j!,
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and the event that no tyre remains in its original position has probability

1− Pr
(⋃

i

Ai

)
=

n∑
j=0

(−1)j

j!
.

(For the case n = 4, the value is 3/8.)

Problem 7.

(a) Let Ai denote the event that Xi ̸= X. The event that X does not appear in the
inventory is thus

A = A1 ∩ · · · ∩ An.

Note that the events A1, . . . , An are not independent—because they involve the com-
mon random variable X. However, they become independent when conditioned on
the value of X, with P (Ai|X = x) = 1− p(x). Thus,

P (A|X = x) = (1− p(x))n.

Consequently P (A) =
∑

x p(x)(1− p(x))n.

(b) With p the uniform distribution on n items, the above value for P (A) equals (1 −
1/n)n.

(c) For n large, (1− 1/n)n approaches 1/e ≈ 37%.
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