ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

PROBLEM 1. Assume ${X_n}_{-\infty}^{\infty}$ and ${Y_n}_{-\infty}^{\infty}$ are two i.i.d. processes (individually) with the same alphabet, with the same entropy rate $H(X_0) = H(Y_0) = 1$ and independent from each other. We construct two processes Z and W as follows:

- To construct the process Z, we flip a fair coin and depending on the result $\Theta \in \{0, 1\}$ we select one of the processes. In other words, $Z_n = \Theta X_n + (1 - \Theta)Y_n$.
- To construct the process W , we do the coin flip at every time n. In other words, at every time *n* we flip a coin and depending on the result $\Theta_n \in \{0,1\}$ we select X_n or Y_n as follows $W_n = \Theta_n X_n + (1 - \Theta_n) Y_n$.
- (a) Are Z and W stationary processes? Are they i.i.d. processes?
- (b) Find the entropy rate of Z and W . How do they compare? When are they equal? Recall that the entropy rate of the process U (if exists) is $\lim_{n\to\infty} \frac{1}{n}H(U_1,\dots,U_n)$.

PROBLEM 2. We have shown in class that

$$
\binom{n}{k} \le 2^{n \ln \left(\frac{k}{n}\right)}.
$$

(a) Given $n \in \mathbb{N}_+$ and $n_1, n_2, \ldots, n_K \in \mathbb{N}$ such that $\sum_{i=1}^n n_i = n$, we define the quantity $\left(\begin{array}{c} n \\ n \end{array} \right)$ $\binom{n}{n_1n_2...n_K} = \frac{n!}{n_1!n_2!}.$ $\frac{n!}{n_1! n_2! ... n_K!}$. Show that

$$
\binom{n}{n_1 n_2 \dots n_K} \le 2^{n \mathsf{h}(p_1, p_2, \dots, p_K)},
$$

where $p_i = \frac{n_i}{n}$ $\frac{n_i}{n}$ and $h(p_1,...,p_K) = -\sum_{i=1}^K p_i \log(p_i)$.

Let U_1, U_2, \ldots be the letters generated by a memoryless source with alphabet $\mathcal{U} = \{u_1, u_2, \ldots, u_K\},\$ i.e., U_1, U_2, \ldots are i.i.d. random variables taking values in the alphabet U according to the distribution $q = \{q_1, q_2, \ldots, q_K\}.$

- (b) We want to compress this source without any idea about its distribution. Describe an optimal universal code that achieves this goal. Give a proof of its optimality. Hint: Use the same idea as for the binary source case.
- (c) What if the source is not i.i.d. Will your code still be optimal?

PROBLEM 3. Suppose p_1, p_2, \ldots, p_k are probability distributions on an alphabet U. Let H_1, \ldots, H_K be the entropies of these distributions, and let $H = \max_k H_k$. Fix $\epsilon > 0$ and for each $n \geq 1$ consider the set

$$
T(n,\epsilon) = \bigcup_{k} T(n, p_k, \epsilon)
$$

where $T(n, p_k, \epsilon)$ is the set of ϵ -typical sequences of length n with respect to the distribution p_k , i.e., $T(n, p_k, \epsilon) = \left\{ u^n \in \mathcal{U}^n : \forall_{u' \in \mathcal{U}} \left| \frac{1}{n} N_{u'}(u^n) - p_k(u') \right| < \epsilon p_k(u') \right\}$ where $N_{u'}(u^n)$ is the number of occurrences of u' in sequence u^n .

Suppose that U_1, U_2, \ldots are i.i.d. with distribution p where p is one of p_1, \ldots, p_K .

- (a) Show that $\lim_{n\to\infty} \Pr((U_1,\ldots,U_n)\in T(n,\epsilon)) = 1$. (In particular for any $\delta > 0$, for n large enough $Pr((U_1, ..., U_n) \in T(n, \epsilon)) > 1 - \delta)$.
- (b) Show that for large enough $n, \frac{1}{n}$ $\frac{1}{n}\log|T(n,\epsilon)| < (1+\epsilon)H + \epsilon.$
- (c) Fix $R > H$ and $\delta > 0$. Show that for n large enough there is a prefix-free code $c: \mathcal{U}^n \to \{0,1\}^*$ such that

$$
\Pr\Big(\text{length}\big(c(U^n)\big) < nR\Big) > 1 - \delta
$$

whenever U_1, U_2, \ldots are i.i.d. with distribution p, where p is one of p_1, \ldots, p_K .

PROBLEM 4. Let the alphabet be $\mathcal{X} = \{a, b\}$. Consider the infinite sequence X_1^{∞} $ababababababab...$

- (a) What is the compressibility of $\rho(X_1^{\infty})$ using finite-state machines (FSM) as defined in class? Justify your answer.
- (b) Design a specific FSM, call it M, with at most 4 states and as low a $\rho_M(X_1^{\infty})$ as possible. What compressibility do you get?
- (c) Using only the result in point (a) but no specific calculations, what is the compressibility of X_1^{∞} under the Lempel–Ziv algorithm, i.e., what is $\rho_{\text{LZ}}(X_1^{\infty})$?
- (d) Re-derive your result from point (c) but this time by means of an explicit computation.