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Problem 1.

(a) We have H
(
f(U)

)
≤ H

(
f(U), U

)
= H(U) +H

(
f(U)

∣∣U)
= H(U) + 0 = H(U).

(b) Notice that U −−◦ V −−◦ f(V ) is a Markov chain. The data processing inequality implies
that H(U) − H

(
U
∣∣f(V )

)
= I

(
U ; f(V )

)
≤ I(U ;V ) = H(U) − H(U |V ). Therefore,

H(U |V ) ≤ H
(
U
∣∣f(V )

)
.

Problem 2.

(a) We have:

H(U |Û) ≤ H(U,W |Û) = H(W |Û) +H(U |Û ,W ) ≤ H(W ) +H(U |Û ,W )

= H(W ) +H(U |Û ,W = 0) · P[W = 0] +H(U |Û ,W = 1) · P[W = 1]

(∗)
≤ h2(pe) + 0 · (1− pe) + log(|U| − 1) · pe = h2(pe) + pe log(|U| − 1),

where (∗) follows from the following facts:

– H(W ) = h2(pe).

– H(U |Û ,W = 0) = 0: conditioned on W = 0, we know that U = Û and so the
conditional entropy H(U |Û ,W = 0) is equal to 0.

– H(U |Û ,W = 1) ≤ log(|U| − 1): conditioned on W = 1, we know that U ̸= Û
and so there are at most |U|−1 values for U . Therefore, the conditional entropy
H(U |Û ,W = 0) is at most log(|U| − 1).

(b) Let Û = f(V ). We have H(U |Û) ≤ h2(pe) + pe log(|U| − 1) from (a). On the other
hand, from Problem 1(b) we have H(U |V ) ≤ H

(
U
∣∣f(V )

)
= H(U |Û). We conclude

that H(U |V ) ≤ h2(pe) + pe log(|U| − 1).

Problem 3.

(a) Since

P (U = u, Z = z) =

{
p(u) if z = 1,

q(u) if z = 2,

one can immediately see that the distribution of U is r(u) = θp(u) + (1− θ)q(u).

(b) H(U) = h(r), and

H(U |Z) =
∑
z

P (Z = z)H(U |Z = z) = θh(p) + (1− θ)h(q).

The last equality follows since given z = 1 (resp. z = 2) U has distribution p (resp. q).

Since H(U) ≥ H(U |Z), we have proved that h(r) ≥ θh(p) + (1− θ)h(q).



Problem 4.

(a) We have:

S =
∑
u∈U

max{P1(u), P2(u)}
(∗)
≤

∑
u∈U

(P1(u) + P2(u))

=
∑
u∈U

P1(u) +
∑
u∈U

P2(u) = 1 + 1 = 2,

It is easy to see from (∗) that S = 2 if and only if max{P1(u), P2(u)} = P1(u)+P2(u)
for all u ∈ U , which is equivalent to say that there is no u ∈ U for which we have
P1(u) > 0 and P2(u) > 0. In other words, S = 2 if and only if

{u ∈ U : P1(u) > 0} ∩ {u ∈ U : P2(u) > 0} = ø.

(b) Let li = ⌈log2 S
max{P1(ai),P2(ai)}⌉, and let us compute the Kraft sum:

M∑
i=1

2−li ≤
M∑
i=1

2
− log2

S
max{P1(ai),P2(ai)} =

M∑
i=1

max{P1(ai), P2(ai)}
S

= 1.

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of
the codeword associated to ai is li.

(c) Since the code constructed in (b) is prefix free, it must be the case that l ≥ H(U).
In order to prove the upper bounds, let P ∗ be the true distribution (which is either
P1 or P2). It is easy to see that P ∗(ai) ≤ max{P1(ai), P2(ai)} for all 1 ≤ i ≤ M . We
have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈
log2

S

max{P1(ai), P2(ai)}

⌉
<

M∑
i=1

P ∗(ai).
(
1 + log2

S

max{P1(ai), P2(ai)}

)
=

M∑
i=1

P ∗(ai).
(
1 + logS + log2

1

max{P1(ai), P2(ai)}

)
= 1 + logS +

M∑
i=1

P ∗(ai). log2
1

max{P1(ai), P2(ai)}

(∗)
≤ 1 + logS +

M∑
i=1

P ∗(ai). log2
1

P ∗(ai)
= H(U) + logS + 1 ≤ H(U) + 2,

where the inequality (∗) uses the fact that P ∗(ai) ≤ max{P1(ai), P2(ai)} for all 1 ≤
i ≤ M .

(d) Now let li = ⌈log2 S
max{P1(ai),...,Pk(ai)}

⌉, and let us compute the Kraft sum:

M∑
i=1

2−li ≤
M∑
i=1

2
− log2

S
max{P1(ai),...,Pk(ai)} =

M∑
i=1

max{P1(ai), . . . , Pk(ai)}
S

= 1.
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Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the
codeword associated to ai is li. Since the code is prefix free, it must be the case that
l ≥ H(U). In order to prove the upper bounds, let P ∗ be the true distribution (which
is either P1 or . . . or Pk). It is easy to see that P ∗(ai) ≤ max{P1(ai), . . . , Pk(ai)} for
all 1 ≤ i ≤ M . We have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈
log2

S

max{P1(ai), . . . , Pk(ai)}

⌉
<

M∑
i=1

P ∗(ai).
(
1 + log2

S

max{P1(ai), . . . , Pk(ai)}

)
=

M∑
i=1

P ∗(ai).
(
1 + log2 S + log2

1

max{P1(ai), . . . , Pk(ai)}

)
= 1 + log2 S +

M∑
i=1

P ∗(ai). log2
1

max{P1(ai), . . . , Pk(ai)}

(∗)
≤ 1 + log2 S +

M∑
i=1

P ∗(ai). log2
1

P ∗(ai)
= H(U) + log2 S + 1,

where the inequality (∗) uses the fact that P ∗(ai) ≤ max{P1(ai), . . . , Pk(ai)} for
all 1 ≤ i ≤ M . Now notice that max{P1(ai), . . . , Pk(ai)} ≤

∑k
j=1 Pj(ai) for all

1 ≤ i ≤ M . Therefore, we have

S =
M∑
i=1

max{P1(ai), . . . , Pk(ai)} ≤
M∑
i=1

k∑
j=1

Pj(ai) =
k∑

j=1

M∑
i=1

Pj(ai) =
k∑

j=1

1 = k.

We conclude that H(U) ≤ l ≤ H(U) + logS + 1 ≤ H(U) + log k + 1.

Problem 5.

(a) We prove the identity by induction on n ≥ 1. For n = 1, the identity is trivial. Let
n > 1 and suppose that the identity is true up to n− 1. We have:

I(Y n−1
1 ;Xn) = I(Y n−2

1 , Yn−1;Xn)
(∗)
= I(Y n−2

1 ;Xn) + I(Xn;Yn−1|Y n−2
1 )

(∗∗)
=

( n−2∑
i=1

I(Xn;Yi|Y i−1
1 )

)
+ I(Xn;Yn−1|Y n−2

1 ) =
n−1∑
i=1

I(Xn;Yi|Y i−1
1 ).

The identity (∗) is by the chain rule for mutual information, and the identity (**) is
by the induction hypothesis.

(b) For every 0 ≤ i ≤ n, define ai = I(Xn
i+1;Y

i
1 ), and for every 1 ≤ i ≤ n, define

bi = I(Xn
i+1;Y

i−1
1 ). It is easy to see that a0 = an = 0. We have:

n∑
i=1

I(Xn
i+1;Yi|Y i−1

1 )
(∗)
=

n∑
i=1

(
I(Xn

i+1;Y
i
1 )− I(Xn

i+1;Y
i−1
1 )

)
=

( n∑
i=1

ai

)
−
( n∑

i=1

bi

)
(∗∗)
=

( n−1∑
i=0

ai

)
−
( n∑

i=1

bi

)
=

( n∑
i=1

ai−1

)
−
( n∑

i=1

bi

)
=

n∑
i=1

(
ai−1 − bi

)
=

n∑
i=1

(
I(Xn

i ;Y
i−1
1 )− I(Xn

i+1;Y
i−1
1 )

)
(∗∗∗)
=

n∑
i=1

I(Y i−1
1 ;Xi|Xn

i+1).
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The identities (∗) and (∗∗∗) are by the chain rule for mutual information. The identity

(∗∗) follows from the fact that a0 = an = 0, which implies that
n∑

i=1

ai =
n−1∑
i=0

ai.

Problem 6.

(a) We can write the following chain of inequalities:

Qn(x)
1
=

n∏
i=1

Q(xi)
2
=

∏
a∈X

Q(a)N(a|x) 3
=

∏
a∈X

Q(a)nPx(a)=
∏
a∈X

2nPx(a) logQ(a) (1)

=
∏
a∈X

2n(Px(a) logQ(a)−Px(a) logPx(a)+Px(a) logPx(a)) (2)

= 2n
∑

a∈X (−Px(a) log
Px(a)
Q(a)

+Px(a) logPx(a)) = 2n(−D(Px||Q)+H(Px)),

where 1 follows because the sequence is i.i.d., grouping symbols gives 2, and 3 is the
definition of type.

(b) Upper bound: We know that

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Consider one term and set p = k/n. Then,

1 ≥
(
n

k

)(
k

n

)k (
1− k

n

)n−k

=

(
n

k

)
2n(

k
n
log k

n
+n−k

n
log n−k

n ) =

(
n

k

)
2−nh2(

k
n
)

Lower bound: Define Sj =
(
n
j

)
pj(1− p)n−j. We can compute

Sj+1

Sj

=
n− j

j + 1

p

1− p
.

One can see that this ratio is a decreasing function in j. It equals 1, if j = np+p−1,
so

Sj+1

Sj
< 1 for j = ⌊np + p⌋ and

Sj+1

Sj
≥ 1 for any smaller j. Hence, Sj takes its

maximum value at j = ⌊np+ p⌋, which equals k in our case. From this we have that

1 =
n∑

j=0

(
n

j

)
pj(1− p)n−j ≤ (n+ 1)max

j

(
n

j

)
pj(1− p)j

≤ (n+ 1)

(
n

k

)(
k

n

)k (
1− k

n

)n−k

= (n+ 1)

(
n

k

)
2−nh2(

k
n
). (3)

The last equality comes from the derivation we had when proving the upper bound.

(c) Since for every x ∈ T (P ), Qn(x) = 2−n(H(P )+D(P∥Q)) (by part (a)) and 1
n+1

2nH(P ) ≤
|T (P )| ≤ 2nH(P ) (by part (b)), we have

1

n+ 1
2−nD(P∥Q) ≤ Qn(T (P )) ≤ 2−nD(P∥Q)
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