
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 12 Information Theory and Coding
Solutions to Homework 5 Oct. 17, 2023

Problem 1.

(a) It is easy to check that W is an i.i.d. process but Z is not. As W is i.i.d. it is also
stationary. We want to show that Z is also stationary. To show this, it is sufficient
to prove that the distribution of the process does not change by shift in the time
domain.

pZ(Zm = am, Zm+1 = am+1, · · · , Zm+r = am+r)

=
1

2
pX(Xm = am, Xm+1 = am+1, · · · , Xm+r = am+r)

+
1

2
pY (Ym = am, Ym+1 = am+1, · · · , Ym+r = am+r)

=
1

2
pX(Xm+s = am, Xm+s+1 = am+1, · · · , Xm+s+r = am+r)

+
1

2
pY (Ym+s = am, Ym+s+1 = am+1, · · · , Ym+s+r = am+r)

= pZ(Zm+s = am, Zm+s+1 = am+1, · · · , Zm+s+r = am+r),

where we used the stationarity of theX and Y processes. This shows the invariance of
the distribution with respect to the arbitrary shift s in time which implies stationarity.

(b) For the Z process we have

H(Z) = lim
n→∞

1

n
H(Z1, · · · , Zn)

= lim
n→∞

1

n
H(Z1, · · · , Zn | Θ)

=
1

2
H(X0) +

1

2
H(Y0) = 1.

W process is an i.i.d process with the distribution pW (a) = 1
2
pX(a) +

1
2
pY (a). From

concavity of the entropy, it is easy to see that H(W) = H(W0) ≥ 1
2
H(X0)+

1
2
H(Y0) =

1. Hence, the entropy rate of W is greater than the entropy rate of Z and the equality
holds if and only if X0 and Y0 have the same probability distribution function.

Problem 2.

(a) Let pi =
ni

n
. Then

1 = (p1 + p2 + · · ·+ pK)
n (a)
=

∑
n1,n2,...,nK
s.t.

∑
ni=n

(
n

n1n2 . . . nK

)
pn1
1 pn2

2 . . . pnK
K

≥
(

n

n1n2 . . . nK

)
pn1
1 pn2

2 . . . pnK
K

≥
(

n

n1n2 . . . nK

)
2n1 log(p1)+n2 log(p2)+···+nK log(pK)

≥
(

n

n1n2 . . . nK

)
2−nh(p1,p2,...,pK),

where (a) is the binomial expansion. This proves our claim.

(b) For a random sequence of length n, U1U2 . . . Un, we encode the number of occurrences
of the first (K − 1) letters, denoted N1, N2, . . . , NK−1, since we get the last letter for
free (NK = n−N1 −N2 − · · · −NK−1). For each letter we need at most ⌈log(n+1)⌉
bits. Now that we know the number of times each letter appeared in the sequence
we need to encode the index of this specific sequence among all sequences having the
same numbers of letter occurrences (N1, . . . , NK−1). Since there are

(
n

N1N2...NK

)
of

those sequences then we need at most
⌈
log

((
n

N1N2...NK

))⌉
bits.

Hence the total length L of the codeword is

L = (K − 1)⌈log(n+ 1)⌉+
⌈
log

((
n

N1N2 . . . NK

))⌉
.

The expected length is

E(L) = (K − 1)⌈log(n+ 1)⌉+ E
(⌈

log

((
n

N1N2 . . . NK

))⌉)
≤ (K − 1) (log(n+ 1) + 1) + E

(
log

((
n

N1N2 . . . NK

)))
+ 1

(a)

≤ (K − 1) log(n+ 1) +K + E
(
nh

(
N1

n
,
N2

n
, . . . ,

NK

n

))
(b)

≤ (K − 1) log(n+ 1) +K + nh

(
E
(
N1

n
,
N2

n
, . . . ,

NK

n

))
where (a) is due to the first part of the exercise and (b) is due to Jensen’s inequality.

For a random sequence U1U2 . . . Un, the number of occurrences of a particular letter
ui is a random variables that can be written as the sum of indicator functions which
take the value 1 with probability qi

Ni =
n∑

j=1

1{Uj=ui}.

Hence

E
(
Ni

n

)
=

∑n
j=1 E

(
1{Uj=ui}

)
n

= qi.

Therefore, the expected codeword length per letter is

1

n
E(L) ≤ (K − 1)

log(n+ 1)

n
+

K

n
+ h (q1, q2, . . . , qK) .

This shows that limn→∞
1
n
E(L) ≤ h(q1, q2, . . . , qK) = H(U). Since the source is i.i.d

then H(U) = limn→∞ H(U1U2 . . . Un). This proves the optimality of this compression
code for i.i.d sources.

(c) If the source is not i.i.d then H(U) ̸= limn→∞ H(U1U2 . . . Un). Hence, the code is not
necessarily optimal.

2

Problem 3.

(a) We have for all k, n and ϵ, P
(
(U1, . . . , Un) ∈ T (n, pk, ϵ)

)
≤ P

(
(U1, . . . , Un) ∈ T (n, ϵ)

)
as T (n, ϵ) ⊇ T (n, pk, ϵ). This implies that for any ϵ > 0, with k and p such that
pk = p, we have

lim
n→∞

Pr
(
(U1, . . . , Un) ∈ T (n, pk, ϵ)

)
≤ lim

n→∞
Pr

(
(U1, . . . , Un) ∈ T (n, ϵ)

)
1 ≤ lim

n→∞
Pr

(
(U1, . . . , Un) ∈ T (n, ϵ)

)
.

where the second line is due to the property of typical sets.

As we also have limn→∞ Pr
(
(U1, . . . , Un) ∈ T (n, ϵ)

)
≤ 1, with these inequalities we

prove the statement.

(b) For typical sets, we know that |T (n, pk, ϵ)| ≤ 2(1+ϵ)Hkn ≤ 2(1+ϵ)Hn. Hence, we obtain
the following upper bound.

|T (n, ϵ)| =

∣∣∣∣∣⋃
k

T (n, pk, ϵ)

∣∣∣∣∣ ≤ ∑
k

|T (n, pk, ϵ)| ≤ K2(1+ϵ)Hn.

By taking logartihm and dividing by n the above expression, we have

1

n
log |T (n, ϵ)| ≤ (1 + ϵ)H +

logK

n
.

This implies that for any n ≥ logK/ϵ we have

1

n
log |T (n, ϵ)| ≤ (1 + ϵ)H + ϵ.

(c) Let us use the construction of prefix-free code for typical set given in the lectures.
First, take an injective function fϵ,n : T (n, ϵ) → {0, 1}⌈n(1+ϵ)H+nϵ⌉, this function exists
for large enough n due to our result in (b). Now take another injective function
gn : Un → {0, 1}⌈n log |U|⌉. We define cϵ,n(x) as 0||fϵ,n(x) if x ∈ T (n, ϵ) and 1||gn
otherwise, where || is the concatenation operator.

We have that

Pr
(
Un ∈ T (n, ϵ)

)
= Pr

(
length

(
cϵ,n(U

n)
)
= ⌈n(1 + ϵ)H + nϵ⌉

)
≤ Pr

(
length

(
cϵ,n(U

n)
)
≤ n(1 + ϵ)H + nϵ+ 1

)
.

From (a) we know that there exists an na(ϵ, δ) such that 1 − δ < Pr
(
Un ∈ T (n, ϵ)

)
for all n ≥ na(ϵ, δ). From (b) we require n ≥ logK/ϵ = nb(K, ϵ). To get the form
required in the problem statement, we need that :

n
(
(1 + ϵ)H + ϵ+ 1/n

)
< nR

Since 1/n ≤ ϵ for n ≥ nb(K, ϵ), the following inequality will also work

n
(
(1 + ϵ)H + 2ϵ

)
< nR.

The above inequality satisfied by choosing an appropriate ϵ
(
i.e., 0 ≤ ϵ < R−H

H+2

)
.

3

Therefore, for a code cϵ,n constructed as above and ϵ chosen small enough, we have

Pr
(
length

(
cϵ∗,n(U

n)
)
< nR

)
≥ Pr

(
length

(
cϵ,n(U

n)
)
≤ n(1 + ϵ)H + nϵ+ 1

)
≥ Pr

(
Un ∈ T (n, ϵ)

)
> 1− δ

for all n ≥ max
{
na(ϵ, δ), nb(K, ϵ)

}
.

Problem 4.

(a) We have ρ(X∞
1) = 0. We show this by showing that ρ(X∞

1) ≤ δ for any δ > 0. To
see the last statement, build an invertible FSM which “recognizes” a string of type
“ab...ab” for a particular even length, call it L, and outputs lets say “0” at the end
of this string and returns to the starting state. Hence this machine will output an
infinite string of “0” when the input is X∞

1 . From each state (including the starting
state) of the chain which recognizes the special string make an edge back to the
starting state in the case the next input is not the correct one. The output for each
such edge is 1 + ⌈logL⌉ bits long, the first bit is 1 to indicate that it is not the
special path and on the next ⌈logL⌉ bits we give the index of the state (in binary
representation) from which the return edge is drawn. This machine is clearly lossless
and has a compressibility of 1/L for the desired sequence.

(b) A machine as described above will have ρM(X∞
1) = 1/4. In fact, one cannot do better

than this. Consider a cycle, when from a given state we get back to the same state.
During such a cycle we have to output at least one symbol, because the machine has
to be information lossless. In an L state machine we eventually create such a cycle
within at most L steps. This means that we output at least one symbol for every L
input symbols, so ρM(X∞

1) ≥ 1/L.

(c) We have ρLZ = 0 since compressibility is non-negative and we know that the com-
pressibility of LZ is at least as good as that of any FSM, i.e., we know that ρLZ(X

∞
1) ≤

ρ(X∞
1).

(d) The dictionary increases by 1 every time and has size 2 in the beginning. Hence, if
we look at lets say c steps of the algorithm then we need in total

c∑
i=1

⌈log(1 + i)⌉ ≤ c log(2(c+ 1))

bits to describe the output.

What are the words which we are using. Note that the parsing is a, b, ab, aba,
ba, bab,. . . Note that in average at most every second step the length of the used
dictionary word increases by 1, i.e., we have a linear increase in the used dictionary
words. Therefore, if we compute the total length which we have parsed after c steps,
this length increases like the square of c.

It follows that the ratio of the total number of bits used divided by the total length
described behaves like 1/c, i.e., it tends to 0.

4

