ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 19	Information Theory and Coding
Homework 8	Nov. 11, 2024

PROBLEM 1. Show that a cascade of n identical binary symmetric channels,

$$X_0 \to \boxed{BSC \ \#1} \to X_1 \to \dots \to X_{n-1} \to \boxed{BSC \ \#n} \to X_n$$

each with raw error probability p, is equivalent to a single BSC with error probability $\frac{1}{2}(1-(1-2p)^n)$ and hence that $\lim_{n\to\infty} I(X_0; X_n) = 0$ if $p \neq 0, 1$. Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

PROBLEM 2. Consider a memoryless channel with transition probability matrix $P_{Y|X}(y|x)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. For a distribution Q over \mathcal{X} , let I(Q) denote the mutual information between the input and the output of the channel when the input distribution is Q. Show that for any two distributions Q and Q' over \mathcal{X} ,

(a)

$$I(Q') \le \sum_{x \in \mathcal{X}} Q'(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log\left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x')Q(x')}\right)$$

(b)

$$C \le \max_{x} \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x')Q(x')} \right)$$

where C is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.

Problem 3.

(a) Show that $I(U; V) \ge I(U; V|T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution p(y|x), and suppose $p_1(x)$ and $p_2(x)$ are two probability distributions on \mathcal{X} .

For $k \in \{1, 2\}$, let I_k denote the mutual information between X and Y when the distribution of X is $p_k(\cdot)$.

For $0 \leq \lambda \leq 1$, let W be a random variable, taking values in $\{1, 2\}$, with

$$\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda.$$

Define

$$p_{W,X,Y}(w,x,y) = \begin{cases} \lambda p_1(x) p(y|x) & \text{if } w = 1\\ (1-\lambda) p_2(x) p(y|x) & \text{if } w = 2. \end{cases}$$

- (b) Express I(X; Y|W) in terms of I_1 , I_2 and λ .
- (c) Express p(x) in terms of $p_1(x)$, $p_2(x)$ and λ .

(d) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y|X}$, the mutual information I(X;Y) is a concave \cap function of p_X .

PROBLEM 4. Suppose Z is uniformly distributed on [-1, 1], and X is a random variable, independent of Z, constrained to take values in [-1, 1]. What distribution for X maximizes the entropy of X + Z? What distribution of X maximizes the entropy of XZ?

PROBLEM 5. Let P_1 and P_2 be two channels of input alphabet \mathcal{X}_1 and \mathcal{X}_2 and of output alphabet \mathcal{Y}_1 and \mathcal{Y}_2 respectively. Consider a communication scheme where the transmitter chooses the channel $(P_1 \text{ or } P_2)$ to be used and where the receiver knows which channel were used. This scheme can be formalized by the channel P of input alphabet $\mathcal{X} =$ $(\mathcal{X}_1 \times \{1\}) \cup (\mathcal{X}_2 \times \{2\})$ and of output alphabet $\mathcal{Y} = (\mathcal{Y}_1 \times \{1\}) \cup (\mathcal{Y}_2 \times \{2\})$, which is defined as follows:

$$P(y, k'|x, k) = \begin{cases} P_k(y|x) & \text{if } k' = k, \\ 0 & \text{otherwise.} \end{cases}$$

Let $X = (X_k, K)$ be a random variable in \mathcal{X} which will be the input distribution to the channel P, and let $Y = (Y_k, K) \in \mathcal{Y}$ be the output distribution. Define X_1 as being the random variable in \mathcal{X}_1 obtained by conditioning X_k on K = 1. Similarly define X_2 , Y_1 and Y_2 . Let α be the probability that K = 1.

- (a) Show that $I(X;Y) = h_2(\alpha) + \alpha I(X_1;Y_1) + (1-\alpha)I(X_2;Y_2).$
- (b) What is the input distribution X that achieves the capacity of P?
- (c) Show that the capacity C of P satisfies $2^C = 2^{C_1} + 2^{C_2}$, where C_1 and C_2 are the capacities of P_1 and P_2 respectively.

PROBLEM 6. Suppose X and Y are independent geometric random variables. That is, $p_X(k) = (1-p)^{k-1}p$ and $p_Y(k) = (1-q)^{k-1}q$, $\forall k \in \{1, 2, ...\}$.

- (a) Find H(X, Y).
- (b) Find H(2X + Y, X 2Y)

Now consider two independent exponential random variables X and Y. That is, $p_X(t) = \lambda_X e^{-\lambda_X t}$ and $p_Y(t) = \lambda_Y e^{-\lambda_Y t}$, $\forall t \in [0, \infty)$.

- (c) Find h(X, Y).
- (d) Find h(2X+Y, X-2Y)