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Problem 1. Show that a cascade of n identical binary symmetric channels,

X0 → BSC #1 → X1 → · · · → Xn−1 → BSC #n → Xn

each with raw error probability p, is equivalent to a single BSC with error probability
1
2

(
1 − (1 − 2p)n

)
and hence that lim

n→∞
I(X0;Xn) = 0 if p ̸= 0, 1. Thus, if no processing is

allowed at the intermediate terminals, the capacity of the cascade tends to zero.

Problem 2. Consider a memoryless channel with transition probability matrix PY |X(y|x),
with x ∈ X and y ∈ Y . For a distribution Q over X , let I(Q) denote the mutual information
between the input and the output of the channel when the input distribution is Q. Show
that for any two distributions Q and Q′ over X ,

(a)

I(Q′) ≤
∑
x∈X

Q′(x)
∑
y∈Y

PY |X(y|x) log
(

PY |X(y|x)∑
x′∈X PY |X(y|x′)Q(x′)

)
(b)

C ≤ max
x

∑
y∈Y

PY |X(y|x) log
(

PY |X(y|x)∑
x′∈X PY |X(y|x′)Q(x′)

)
where C is the capacity of the channel. Notice that this upper bound to the capacity
is independent of the maximizing distribution.

Problem 3.

(a) Show that I(U ;V ) ≥ I(U ;V |T ) if T , U , V form a Markov chain, i.e., conditional on
U , the random variables T and V are independent.

Fix a conditional probability distribution p(y|x), and suppose p1(x) and p2(x) are two
probability distributions on X .

For k ∈ {1, 2}, let Ik denote the mutual information between X and Y when the
distribution of X is pk(·).

For 0 ≤ λ ≤ 1, let W be a random variable, taking values in {1, 2}, with

Pr(W = 1) = λ, Pr(W = 2) = 1− λ.

Define

pW,X,Y (w, x, y) =

{
λp1(x)p(y|x) if w = 1

(1− λ)p2(x)p(y|x) if w = 2.

(b) Express I(X;Y |W ) in terms of I1, I2 and λ.

(c) Express p(x) in terms of p1(x), p2(x) and λ.



(d) Using (a), (b) and (c) show that, for every fixed conditional distribution pY |X , the
mutual information I(X;Y ) is a concave ∩ function of pX .

Problem 4. Suppose Z is uniformly distributed on [−1, 1], and X is a random variable,
independent of Z, constrained to take values in [−1, 1]. What distribution for X maximizes
the entropy of X + Z? What distribution of X maximizes the entropy of XZ?

Problem 5. Let P1 and P2 be two channels of input alphabet X1 and X2 and of output
alphabet Y1 and Y2 respectively. Consider a communication scheme where the transmitter
chooses the channel (P1 or P2) to be used and where the receiver knows which channel
were used. This scheme can be formalized by the channel P of input alphabet X =
(X1 × {1}) ∪ (X2 × {2}) and of output alphabet Y = (Y1 × {1}) ∪ (Y2 × {2}), which is
defined as follows:

P (y, k′|x, k) =

{
Pk(y|x) if k′ = k,

0 otherwise.

Let X = (Xk, K) be a random variable in X which will be the input distribution to the
channel P , and let Y = (Yk, K) ∈ Y be the output distribution. Define X1 as being the
random variable in X1 obtained by conditioning Xk on K = 1. Similarly define X2, Y1 and
Y2. Let α be the probability that K = 1.

(a) Show that I(X;Y ) = h2(α) + αI(X1;Y1) + (1− α)I(X2;Y2).

(b) What is the input distribution X that achieves the capacity of P?

(c) Show that the capacity C of P satisfies 2C = 2C1 + 2C2 , where C1 and C2 are the
capacities of P1 and P2 respectively.

Problem 6. Suppose X and Y are independent geometric random variables. That is,
pX(k) = (1− p)k−1p and pY (k) = (1− q)k−1q, ∀k ∈ {1, 2, . . .}.

(a) Find H(X, Y ).

(b) Find H(2X + Y,X − 2Y )

Now consider two independent exponential random variables X and Y . That is, pX(t) =
λXe

−λX t and pY (t) = λY e
−λY t, ∀t ∈ [0,∞).

(c) Find h(X, Y ).

(d) Find h(2X + Y,X − 2Y )
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