ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

PROBLEM 1. Suppose U is $\{0,1\}$ valued with $\mathbb{P}(U = 0) = \mathbb{P}(U = 1) = 1/2$. Suppose we have a distortion measure d given by

$$
d(u, v) = \begin{cases} 0, & u = v \\ 1, & (u, v) = (1, 0) \\ \infty, & (u, v) = (0, 1) \end{cases}
$$

i.e., we never want to represent a 0 with a 1. Find $R(D)$.

PROBLEM 2. Suppose $\mathcal{U} = \mathcal{V}$ are additive groups with group operation ⊕. (E.g., $\mathcal{U} =$ $V = \{0, \ldots, K-1\}$, with modulo K addition.) Suppose the distortion measure $d(u, v)$ depends only on the difference between u and v and is given by $g(u \ominus v)$. Let $\phi(D)$ denote $\max\{H(Z) : E[q(Z)] \leq D\}.$

a) Show that $\phi(D)$ is concave.

b) Let (U, V) be such that $E[d(U, V)] \leq D$. Show that $I(U; V) \geq H(U) - \phi(D)$ by justifying

$$
I(U;V) = H(U) - H(U|V) = H(U) - H(U \oplus V|V) \ge H(U) - H(U \oplus V) \ge H(U) - \phi(D).
$$

- c) Show that $R(D) \geq H(U) \phi(D)$.
- d) Assume now that U is uniform on U. Show that $R(D) = H(U) \phi(D)$.

PROBLEM 3. Suppose $\mathcal{U} = \mathcal{V} = \mathbb{R}$, the set of real numbers, and $d(u, v) = (u - v)^2$.

(a) Show that for any U with variance σ^2 , $R(D)$ satisfies

$$
h(U) - \frac{1}{2}\log(2\pi eD) \le R(D).
$$

(b) Show that $R(D)$ does not depend on the mean of U.

Now, assume without loss of generality that U is zero-mean. Suppose we have access to a noisy observation V of U through the channel $U + Z = V$, where $Z \sim \mathcal{N}(0, \sigma_Z^2)$ and independent of U. We reconstruct U via a linear estimator $\hat{U} = aV + b$.

- (c) Show that $a = \frac{\sigma^2}{\sigma^2 + 1}$ $\frac{\sigma^2}{\sigma^2 + \sigma_Z^2}$ and $b = 0$ minimizes $E[(U - \hat{U})^2]$ and for such choice of a, b, $E[(U - \hat{U})^2] = \sigma^2 \frac{\sigma_Z^2}{\sigma^2 + \sigma_Z^2}.$
- (d) For the channel above, show that

$$
I(U;V) \le \frac{1}{2}\log\left(1 + \frac{\sigma^2}{\sigma_Z^2}\right)
$$

(e) Show that for $D \leq \sigma^2$

$$
R(D) \le \frac{1}{2} \log(\sigma^2/D).
$$

[Hint: Use the channel above for a candidate $p_{V | U}$.]

PROBLEM 4. Given finite alphabets $\mathcal X$ and $\mathcal Y$, a distribution p_{XY} , $0 < \epsilon < \epsilon'$, and a sequence $x^n \in T(n, p_X, \epsilon)$, consider a random vector Y^n with independent components with $Pr(Y_i = y) = p_{Y|X}(y|x_i).$

For $x \in \mathcal{X}$, let $J(x) = \{i : x_i = x\}$. For an $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, let $N(x, y) = \sum_i \mathbb{1}\{(x_i, Y_i) =$ (x, y) } = $\sum_{i \in J(x)} \mathbb{1} \{ Y_i = y \}.$

- (a) Show that for each x and y, $np(x, y)(1 \epsilon) \leq E[N(x, y)] \leq np(x, y)(1 + \epsilon)$, and $Var(N(x, y))$ is at most n. [Hint: don't forget that x^n is in $T(n, p_X, \epsilon)$.]
- (b) Show that for each x and y, both Pr $(N(x, y) < np(x, y)(1 \epsilon))$ and Pr $(N(x, y) >$ $np(x, y)(1 + \epsilon')$ approach to zero as n gets large. Would this be true if we had not assumed $\epsilon < \epsilon$?
- (c) Using (a) and (b) show that $Pr((x^n, Y^n) \notin T(n, p_{XY}, \epsilon))$ approaches 0 as gets large.
- (d) Suppose now we have a distribution $p(u, x, y)$ where $p(y|ux) = p(y|x)$. [In other words, U, X, Y form a Markov chain.] Suppose (u^n, x^n) is in $T(n, p_{UX}, \epsilon)$, and Y^n has independent components as above. What can we say about $Pr((u^n, x^n, Y^n) \in$ $T(n, p_{UXY}, \epsilon')$?