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Problem 1. (16 points)

Suppose f : [0,∞) → R∪{±∞} is a decreasing, convex function, and p and q are probability
distributions on an alphabet U (i.e., p(u) ≥ 0 and

∑
u∈U p(u) = 1, similarly for q). Define

Kf (p, q) =
∑

u : p(u)>0

p(u) f

(
q(u)

p(u)

)
.

(a) (2 pts) Show that Kf (p, q) ≥ f(1), and equality happens if q = p.
Hint: Make sure to use convexity.

Solution: Using the convexity of f , Jensen’s inequality gives

Kf (p, q) =
∑

u : p(u)>0

p(u) f

(
q(u)

p(u)

)
≥ f

( ∑
u : p(u)>0

p(u)
q(u)

p(u)

)
= f

( ∑
u : p(u)>0

q(u)

)
.

Moreover,
∑

u : p(u)>0 q(u) ≤ 1 and f is decreasing so that f

(∑
u : p(u)>0 q(u)

)
≥ f(1).

When q = p, we get

Kf (p, p) =
∑

u : p(u)>0

p(u) f

(
p(u)

p(u)

)
=

∑
u : p(u)>0

p(u) f(1) = f(1).

Suppose U is a random variable with distribution p. A “prediction” about U is a probability
distribution q on U — basically saying “I believe we will see the value u with probability

q(u)”. A prediction q is assigned a score via score(q) = E
[

1
q(U)

]
=
∑

u
p(u)
q(u)

.

(b) (3 pts) Let p1/2(u) =
p(u)1/2

A
, where A =

∑
u p(u)

1/2 to ensure that p1/2 is a probability
distribution. Show that for any probability distribution q, score(q) ≥ A2, with equal-
ity if q = p1/2.
Hint: First show that with f(x) = 1/x, score(q) = A2Kf (p1/2, q).

Solution: Following the hint, we consider f(x) = 1/x (which is indeed convex and
decreasing) and first show that score(q) = A2Kf (p1/2, q). We have

A2Kf (p1/2, q) = A2
∑

u:p(u)>0

(
p1/2(u)

)2
q(u)

= A2
∑

u:p(u)>0

(
p1/2(u)/A

)2
q(u)

=
∑

u:p(u)>0

p(u)

q(u)

=
∑
u

p(u)

q(u)

= score(q).



By the derivation in part (a), Kf (p1/2, q) ≥ f(1) with equality when q = p1/2, from
which we conclude that score(q) ≥ A2f(1) = A2 with equality when q = p1/2.

(c) (3 pts) Suppose c : U → {0, 1}∗ is a uniquely decodable code. Show that E[2length(c(U))] ≥
A2.

Solution: We would like to make a particular choice for a distribution q and use the
result in part (b). The way score is defined suggests the choice q(u) = 2− length(c(u)),
however we need to q to be a probability distribution. By normalizing appropriately,
our guess becomes q(u) = 2− length(c(u))/(

∑
v 2

− length(c(v))). This choice gives

score(q) =
∑
u

p(u)2length(c(u))

(∑
v

2− length(c(v))

)
≤
∑
u

p(u)2length(c(u))

= E[2length(c(U))],

where the inequality follows from Kraft’s inequality since c is uniquely decodable.
The result then follows from part (b) since score(q) ≥ A2.

Fix α > 0.

(d) (3 pts) Replace the score function above with scoreα(q) = E[q(U)−α] =
∑

u
p(u)
q(u)α

.

Show that for any q, scoreα(q) ≥ (A1/1+α)
1+α, with equality if q = p1/1+α, where we

define ps(u) = p(u)s/As where As =
∑

u p(u)
s.

Hint: Choose f appropriately and express scoreα(q) in terms of Kf (ps, q) for some s.

Solution: The proof strategy is similar to the one in part (b). Let us consider
f(x) = 1/xα (which is indeed convex and decreasing, as required) and show that
scoreα(q) = (A1/1+α)

1+αKf (p1/1+α, q). We have

(A1/1+α)
1+αKf (p1/1+α, q) = (A1/1+α)

1+α
∑

u:p(u)>0

(
p1/1+α(u)

)1+α

q(u)α

= (A1/1+α)
1+α

∑
u:p(u)>0

(
p1/(1+α)(u)/A1/1+α

)1+α

q(u)α

=
∑

u:p(u)>0

p(u)

q(u)α

=
∑
u

p(u)

q(u)α

= scoreα(q).

By the derivation in part (a), Kf (p1/1+α, q) ≥ f(1) with equality when q = p1/1+α,
from which we conclude that scoreα(q) ≥ (A1/1+α)

1+αf(1) = (A1/1+α)
1+α with equality

when q = p1/1+α.

(e) (2 pts) Show that for any uniquely decodable code c : U → {0, 1}∗,

E[2α length(c(U))] ≥ (A1/1+α)
1+α.
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Solution: As in part (c), we select q(u) = 2− length(c(u))/(
∑

v 2
− length(c(v))). This choice

of distribution gives

scoreα(q) =
∑
u

p(u)2α length(c(u))

(∑
v

2− length(c(v))

)α

≤
∑
u

p(u)2α length(c(u))

= E[2α length(c(U))],

where the inequality follows from Kraft’s inequality since c is uniquely decodable.
The result then follows from part (d) since scoreα(q) ≥ (A1/1+α)

1+α.

(f) (3 pts) Show that there exists a prefix-free code c : U → {0, 1}∗ such that

E[2α length(c(U))] ≤ 2α(A1/1+α)
1+α.

Solution: Notice that in order to prove an upper-bound on E[2α length(c(U))], we some-
how have to make a choice in which q = p1/1+α for otherwise we know from previous
parts that we obtain a lower-bound on E[2α length(c(U))].

Our strategy is the following: we construct a prefix-free code by choosing the length
of codewords according to

length(c(u)) =
⌈
− log(p1/1+α(u))

⌉
, u ∈ U .

This choice of lengths satisfies Kraft’s inequality, and hence, there exists a prefix-free
code with these lengths (such as a Shannon code, see Problem 3 in Homework 2).
Thus, we get

E[2α length(c(U))] =
∑
u

p(u)2α⌈− log(p1/1+α(u))⌉

≤
∑
u

p(u)2α(− log(p1/1+α(u))+1)

= 2α
∑
u

p(u)2log(p1/1+α(u)
−α)

= 2α
∑
u

p(u)

p1/1+α(u)α

= 2α scoreα(p1/1+α).

Finally, part (d) tells us that the α-score of p1/1+α is precisely equal to (A1/1+α)
1+α, so

that indeed
E[2α length(c(U))] ≤ 2α(A1/1+α)

1+α.

Remarks: In the lectures, we saw that a possible choice of the score is score(q) = E
[
log 1

q(U)

]
.

The problem of minimizing this score is equivalent to the problem of minimizing the ex-
pected codeword length (with the identification q(u) ∝ 2− length(c(u))), and the minimizer is
q = p, i.e., length(c(u)) = − log p(u) rounded up. In this problem, we see how different
choices of the score such as E[q(U)−α] can lead to surprising observations, such as the “best
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prediction” not even being q = p, but rather q = p1/1+α. That is, if the objective is to mini-
mize the expected value of 2α length c(u)) rather than simply length(c(u)), the optimal choice
is length(c(u)) = − log p1/1+α rounded up. The quantity E[2α length(c(U))] as a function of α is
the moment generating function of length(c(U)), which is useful in obtaining tail probabil-
ity bounds such as Pr {length(c(U)) ≥ l} = Pr

{
2α length(c(U)) ≥ 2αl

}
≤ 2−αlE[2α length(c(U))],

using the Markov inequality. The quantity Kf (p, q) is called an f -divergence, usually de-
noted by Df (q ∥ p), which can be defined for any convex f . A special example is the KL
divergence, obtained by taking f(x) = x log x or f(x) = − log x. If f(1) = 0, we get
Df (p ∥ p) = 0. Other well-known examples include the squared Hellinger distance, total
variation, chi-squared divergence, and so on.

Problem 2. (12 points)

For this problem, we define the following notation different from that used in the lectures.
Fix a natural number n. Let (X1, . . . , Xn) be a vector of binary random variables, with each
Xi taking values in {0, 1}. For i, j = 1, . . . , n, let Xj

i = (Xi, . . . , Xj) if i ≤ j and empty if
i > j. Let X ̸=i denote the vector X

n
1 without the ith element, i.e., X ̸=i = (X i−1

1 , Xn
i+1). Also

let X(̄i) denote the vector Xn
1 with its ith element flipped, i.e., X(̄i) = (X i−1

1 , 1−Xi, X
n
i+1).

(a) (3 pts) Show that
∑n

i=1H(Xi | X ̸=i) ≤ H(Xn
1 ).

Solution: Using the fact that conditioning reduces entropy, we have

n∑
i=1

H(Xi | X ̸=i) =
n∑

i=1

H(Xi | X i−1
1 , Xn

i+1)

≤
n∑

i=1

H(Xi | X i−1
1 ) = H(Xn

1 ),

with the last equality immediate from the chain rule of entropy.

Let A be a subset of {0, 1}n, i.e., A consists of binary vectors of length n. Denote by E(A)
the set of pairs of vectors in A that differ at exactly one position, i.e.,

E(A) = {(xn
1 , x̃

n
1 ) ∈ A× A such that x̃i ̸= xi for exactly one i}

= {(xn
1 , x̃

n
1 ) ∈ A× A such that x̃n

1 = x(̄i) for some i}.

Let (X1, . . . , Xn) be randomly and uniformly chosen from A.

(b) (3 pts) Fix xn
1 ∈ A. Compute H(Xi | X ̸=i = x ̸=i).

Hint: Consider two cases: x(̄i) ∈ A and x(̄i) /∈ A.

Solution: As suggested by the hint, first suppose x(̄i) ∈ A. Then, as both xn
1 and x(̄i)

(which, by definition is the vector xn
1 with the ith element flipped) are in A, given

that X ̸=i = x ̸=i, Xi could either be 0 or 1 with equal probability, since Xn
1 is picked

uniformly from A. Hence, H(Xi | X ̸=i = x ̸=i) = 1 when x(̄i) ∈ A. On the other hand,
if x(̄i) is not in A, then given X ̸=i = x ̸=i, Xi must be equal to the ith element of xn

1 ,
and hence H(Xi | X ̸=i = x ̸=i) = 0 when x(̄i) /∈ A. Putting the two together, we have
H(Xi | X ̸=i = x ̸=i) = 1{x(̄i) ∈ A} for any xn

1 ∈ A.
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(c) (3 pts) Show that H(Xi | X ̸=i) =
1
|A|
∑

xn
1∈A

1{x(̄i) ∈ A}.
Solution: Let p denote the distribution induced by the uniformly drawn Xn

1 . By
definition of conditional entropy, H(Xi | X ̸=i) =

∑
x ̸=i

p(x ̸=i)H(Xi | X ̸=i = x ̸=i). We
can write this as

H(Xi | X ̸=i) =
∑

x ̸=i∈{0,1}n−1

p(x ̸=i)H(Xi | X ̸=i = x ̸=i)

=
∑

x ̸=i∈{0,1}n−1

p(x ̸=i)

 ∑
xi∈{0,1}

p(xi)

H(Xi | X ̸=i = x ̸=i)

=
∑

xn
1∈{0,1}n

p(xn
1 )H(Xi | X ̸=i = x ̸=i)

=
1

|A|
∑
xn
1∈A

1{x(̄i) ∈ A},

since for a given xn
1 ∈ A, H(Xi | X ̸=i = x ̸=i) = 1{x(̄i) ∈ A}. Note that we could not

have written this equality without first fixing an xn
1 .

(d) (3 pts) Show that
∑n

i=1H(Xi | X ̸=i) =
|E(A)|
|A| and conclude that |E(A)| ≤ |A| log |A|.

Hint: Use (a).

Solution: Using the result in (c), we directly have

n∑
i=1

H(Xi | X ̸=i) =
n∑

i=1

1

|A|
∑
xn
1∈A

1{x(̄i) ∈ A}

=
1

|A|
∑
xn
1∈A

n∑
i=1

1{x(̄i) ∈ A}.

Observe that for xn
1 ∈ A,

∑n
i=1 1{x(̄i) ∈ A} is equal to 1 if either one of (xn

1 , x(̄i)) or
(x(̄i), x

n
1 ) is in A. Hence, summing this over all xn

1 in A, we get |E(A)|, and we have

that
∑n

i=1H(Xi | X ̸=i) =
|E(A)|
|A| . From part (a), we know that

∑n
i=1H(Xi | X ̸=i) ≤

H(Xn
1 ), which is in turn less than log |A| since Xn

1 is distributed on A, and we are
done.

Remarks: The set {0, 1}n is the binary hypercube, equipped with a graph structure by
defining the edge relation as in the definition of E(A), i.e., two points in {0, 1}n are con-
nected by an edge if they differ at exactly one position. The subset A is then a subgraph
of {0, 1}n and E(A) is then the set of directed edges induced by A. The result in (d) shows

that the density of directed edges induced by a subgraph A (i.e., |E(A)|
|A| ) is at most log |A|

(if we considered unordered pairs in the definition, we would get (undirected) edges and
a density of 1

2
log |A|). Equality occurs if and only if A is a lower-dimensional hypercube

in {0, 1}n (i.e., Xi are all independent when Xn
1 is uniformly distributed on A), so the

inequality is tight. See Fig. 1 for an illustration. The inequality derived in part (a) is
sometimes called Han’s inequality.

Problem 3. (15 points)
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Figure 1: Example of binary hypercube with n = 3 with the set A1 marked by red squares
and A2 marked by large blue circles. |A1| = 4, |E(A)| = 6 < 8 = 4 · 2 = |A1| log |A1|.
|A2| = 2, |E(A)| = 2 = 2 = 2 · 1 = |A2| log |A2|.

(a) (2 pts) Suppose p is a probability distribution on U . Show that for any probability

distribution q on U , max
u∈U

log p(u)
q(u)

≥ 0. Additionally, show that min
q

max
u∈U

log p(u)
q(u)

= 0,

where the minimization is over all probability distributions q on U .
Solution: Recall that the KL divergenceD(p∥q) between two probability distributions
p and q is always non-negative and hence

0 ≤ D(p∥q) =
∑
u

p(u) log
p(u)

q(u)

≤
∑
u

p(u)max
v

log
p(v)

q(v)

=

(
max

v
log

p(v)

q(v)

)∑
u

p(u)

= max
v

log
p(v)

q(v)
.

Finally, notice that for q = p, we have maxv log
p(v)
q(v)

= log(1) = 0, so that the

minimum over distributions q of maxv log
p(v)
q(v)

is in indeed equal to zero.

(b) (2 pts) Show that min
q

max
u∈U

log f(u)
q(u)

= logK, where K =
∑

u f(u) for a nonnegative

function f .
Hint: Use (a).

Solution: In order to leverage part (a), we need to deal with probability distributions.
Following the hint, we can render f(u) a probability distribution by appropriately
normalizing it, that is by considering p(u) = f(u)/K. With this, we have

min
q

max
u∈U

log
f(u)

q(u)
= min

q
max
u∈U

log
Kf(u)

Kq(u)

= min
q

max
u∈U

{
logK + log

f(u)

Kq(u)

}
= min

q
max
u∈U

logK +min
q

max
u∈U

log
f(u)

Kq(u)︸ ︷︷ ︸
=0 from part (a)

= logK.
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Suppose from now on that for every θ in some parameter set Θ, we have a probability
distribution pθ on U .

(c) (2 pts) Show that min
q

max
u∈U , θ∈Θ

log pθ(u)
q(u)

= S, where S = log
∑
u∈U

max
θ∈Θ

pθ(u).

Hint: Use (b).

Solution: The only difference here compared to previous parts is that we have an
additional maximum over the parameters θ. By remembering that the logarithm is
an increasing function, we can swap a maximum with a log. Formally, this means

min
q

max
u∈U ,θ∈Θ

log
pθ(u)

q(u)
= min

q
max
u∈U

log
maxθ∈Θ pθ(u)

q(u)
.

It remains to use our result from part (b) with the choice f(u) = maxθ∈Θ pθ(u) (which
is indeed nonnegative), so that K =

∑
u∈U maxθ∈Θ pθ(u). Combining everything

yields minq maxu∈U ,θ∈Θ log pθ(u)
q(u)

= log
∑

u∈U maxθ∈Θ pθ(u) as expected.

Let us also note that part (a) informs us that the value S is attained for the distri-
bution q = (maxθ∈Θ pθ(u))/K.

(d) (3 pts) Suppose we do not know the probability distribution of a random vari-
able U , except that the distribution is one of the pθ above. Show that there is
a prefix-free code c : U → {0, 1}∗ such that, for every θ ∈ Θ and every u ∈ U ,
length c(u) ≤ log 1

pθ(u)
+ S + 1, where S is as in part (c) above.

Solution: We use Shannon coding with codewords lengths given by the probability dis-
tribution encountered in part (e), maxϕ∈Θ pϕ(u)/K, where K =

∑
u∈U maxϕ∈Θ pϕ(u).

This choice of lengths satisfies Kraft’s inequality, hence there exists a prefix-free code
with these codeword lengths. For any u ∈ U , we have

length(c(u)) =

⌈
− log

(
maxϕ∈Θ pϕ(u)

K

)⌉
≤ log

(
1

(maxϕ∈Θ pϕ(u))/K

)
+ 1

= log

(
pθ(u)

(maxϕ∈Θ pϕ(u))/K

)
+ log

(
1

pθ(u)

)
+ 1

≤ max
u∈U ,θ∈Θ

log

(
pθ(u)

(maxθ∈Θ pϕ(u))/K

)
+ log

(
1

pθ(u)

)
+ 1.

From part (c), we know minq maxu∈U ,θ∈Θ log pθ(u)
q(u)

= S, with S attained when q =

(maxθ∈Θ pθ(u))/K. Hence maxu∈U ,θ∈Θ log
(

pθ(u)
(maxθ∈Θ pϕ(u))/K

)
= S and we conclude

that

length(c(u)) ≤ S + log

(
1

pθ(u)

)
+ 1.

Suppose we know that U1, U2, . . . , are i.i.d. Bernoulli(θ) random variables, but we do not
know the value of θ ∈ [0, 1]. For un ∈ {0, 1}n, define pθ(u

n) = θk(u
n)(1 − θ)n−k(un), where

k(un) is the number of 1’s in the sequence (u1, . . . , un). With this definition, Pr(Un =
un) = pθ(u

n).
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(e) (3 pts) Show that for any un, we have max
θ∈[0,1]

pθ(u
n) =

(
k
n

)k (
1− k

n

)n−k
with k = k(un),

and conclude that∑
un∈{0,1}n

max
θ∈[0,1]

pθ(u
n) =

n∑
i=0

(
n

i

)(
i

n

)i(
1− i

n

)n−i

.

Hint: Differentiate log pθ(u
n) with respect to θ.

Solution: First, notice that the probability of a sequence un solely depends on the
number of 1’s appearing in it. As such, sequences with the same number of 1’s are
assigned the same probability. Since there are

(
n
k

)
sequences with k ones, we can

rewrite the sum over all sequences as follows:

∑
un∈{0,1}n

max
θ∈[0,1]

θk(u
n)(1− θ)n−k(un) =

n∑
k=0

(
n

k

)
max
θ∈[0,1]

θk(1− θ)n−k (1)

Next, we evaluate maxθ∈[0,1] θ
k(1 − θ)n−k. Since the logarithm is an increasing func-

tion, the parameter θ maximizing pθ(u
n) is the same as the parameter maximizing

log pθ(u
n). To find the optimal parameter, compute the derivative of the function

g(θ) = log
(
θk(1− θ)n−k

)
= k log θ+(n−k) log(1−θ) and set it to 0. Doing so will give

the optimal parameter θ⋆ = k
n
. It remains to show that this is a maximum by inspect-

ing the sign of the second derivative of g(θ). We find that g′′(θ) = − k
θ2

− n−k
(1−θ)2

≤ 0,
so that g is concave and hence θ⋆ is indeed a maximum.

Overall, we just proved that

max
θ∈[0,1]

θk(u
n)(1− θ)n−k(un) =

(
k

n

)k (
1− k

n

)n−k

,

and plugging this back in Eq. (1) gives the desired result.

(f) (3 pts) Show that for each n, there is a prefix-free code cn : {0, 1}n → {0, 1}∗ such
that, for every θ ∈ [0, 1] and every un ∈ {0, 1}n,

length cn(u
n) ≤ log

1

pθ(un)
+ log(1 + n) + 1.

Hint: Use (d) and (e).

Solution: We know from part (d) that given a family of distribution (pθ)θ∈Θ, designing
a Shannon code with the probability distribution given by maxϕ∈Θ pϕ(u)/K, where
K =

∑
u∈U maxϕ∈Θ pϕ(u) will give codewords lengths such that

length(c(u)) ≤ log
∑
u∈U

max
θ∈Θ

pθ(u) + log

(
1

pθ(u)

)
+ 1

= log

(∑
u∈U

max
θ∈Θ

pθ(u)

)
+ log

(
1

pθ(u)

)
+ 1.

In this part, the family of distributions is given by (pθ)θ∈[0,1] where pθ(u
n) = θk(u

n)(1−
θ)n−k(un) and k(un) is the number of ones in un. For this family of distributions, the
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Shannon coding mentioned above is such that

length(c(un)) ≤ log

 ∑
un∈{0,1}n

max
θ∈[0,1]

θk(u
n)(1− θ)n−k(un)

+ log

(
1

pθ(un)

)
+ 1

and with our result from part (e) we can write

length(c(un)) ≤ log

(
n∑

k=0

(
n

k

)(
k

n

)k (
1− k

n

)n−k
)

+ log

(
1

pθ(un)

)
+ 1. (2)

We see from here that we can reach the desired result if we can show

n∑
k=0

(
n

k

)(
k

n

)k (
1− k

n

)n−k

≤ n+ 1.

To do so, we upper bound each term of that last sum. Since for any 0 ≤ k ≤ n, the

term
(
n
k

) (
k
n

)k (
1− k

n

)n−k
can be seen as the probability of a binomial random variable

with parameter k/n being equal to k (or the probability of observing k heads out of
n i.i.d. fair coin tosses), it is upper bounded by 1. Hence,∑

un∈{0,1}n
max
θ∈[0,1]

θk(u
n)(1− θ)n−k(un) ≤ n+ 1,

and using this back in Eq. (2) and dividing by n gives the desired result.

Remarks: Normalizing the result in part (f) by dividing by n, we have 1
n
length cn(u

n) ≤
1
n
log 1

pθ(un)
+ 1

n
log(1+n)+ 1

n
. As n → ∞, the last two terms go to zero, and we obtain that

the lengths of the codewords are nearly log 1
pθ(un)

, which is what we would have chosen had
we known the parameter θ. Thus, this result shows universal compression in a “point-wise”
sense — not only can we make the average lengths equal to the optimal average without

knowing the distribution
(
as E

[
1
n
log 1

pθ(Un)

]
= H(U)

)
, but also for each sequence un. By

a tighter analysis, the log(1 + n) term can be improved to log
(
1 +

√
π
2
n
)
≈ 1

2
log(1 + n).

9


