ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

PROBLEM 1. (16 points)

Suppose $f : [0, \infty) \to \mathbb{R} \cup {\pm \infty}$ is a decreasing, convex function, and p and q are probability distributions on an alphabet \mathcal{U} (i.e., $p(u) \geq 0$ and $\sum_{u \in \mathcal{U}} p(u) = 1$, similarly for q). Define

$$
K_f(p,q) = \sum_{u:p(u)>0} p(u) f\left(\frac{q(u)}{p(u)}\right).
$$

(a) (2 pts) Show that $K_f(p,q) \ge f(1)$, and equality happens if $q = p$. Hint: Make sure to use convexity.

Solution: Using the convexity of f , Jensen's inequality gives

$$
K_f(p,q) = \sum_{u \,:\, p(u) > 0} p(u) \, f\bigg(\frac{q(u)}{p(u)}\bigg) \ge f\bigg(\sum_{u \,:\, p(u) > 0} p(u) \, \frac{q(u)}{p(u)}\bigg) = f\bigg(\sum_{u \,:\, p(u) > 0} q(u)\bigg).
$$

Moreover, $\sum_{u \,:\, p(u) > 0} q(u) \leq 1$ and f is decreasing so that $f\left(\sum_{u \,:\, p(u) > 0} q(u) \right)$ \setminus $\geq f(1)$.

When $q = p$, we get

$$
K_f(p,p) = \sum_{u:p(u)>0} p(u) f\left(\frac{p(u)}{p(u)}\right) = \sum_{u:p(u)>0} p(u) f(1) = f(1).
$$

Suppose U is a random variable with distribution p. A "prediction" about U is a probability distribution q on \mathcal{U} — basically saying "I believe we will see the value u with probability $q(u)$ ". A prediction q is assigned a score via score $(q) = \mathbb{E}\left[\frac{1}{q(t)}\right]$ $\frac{1}{q(U)}\Big] = \sum_{u}$ $p(u)$ $rac{p(u)}{q(u)}$.

(b) (3 pts) Let $p_{1/2}(u) = \frac{p(u)^{1/2}}{A}$ $\frac{d^{1/2}}{A}$, where $A = \sum_{u} p(u)^{1/2}$ to ensure that $p_{1/2}$ is a probability distribution. Show that for any probability distribution q, $\text{score}(q) \geq A^2$, with equality if $q = p_{1/2}$.

Hint: First show that with $f(x) = 1/x$, score $(q) = A^2 K_f(p_{1/2}, q)$.

Solution: Following the hint, we consider $f(x) = 1/x$ (which is indeed convex and decreasing) and first show that $score(q) = A^2 K_f(p_{1/2}, q)$. We have

$$
A^{2}K_{f}(p_{1/2}, q) = A^{2} \sum_{u:p(u)>0} \frac{(p_{1/2}(u))^{2}}{q(u)}
$$

= $A^{2} \sum_{u:p(u)>0} \frac{(p^{1/2}(u)/A)^{2}}{q(u)}$
= $\sum_{u:p(u)>0} \frac{p(u)}{q(u)}$
= $\sum_{u} \frac{p(u)}{q(u)}$
= score(q).

By the derivation in part (a), $K_f(p_{1/2}, q) \ge f(1)$ with equality when $q = p_{1/2}$, from which we conclude that $\text{score}(q) \geq A^2 f(1) = A^2$ with equality when $q = p_{1/2}$.

(c) (3 pts) Suppose $c: U \to \{0,1\}^*$ is a uniquely decodable code. Show that $\mathbb{E}[2^{\text{length}(c(U))}] \geq$ A^2 .

Solution: We would like to make a particular choice for a distribution q and use the result in part (b). The way score is defined suggests the choice $q(u) = 2^{-\text{length}(c(u))}$, however we need to q to be a probability distribution. By normalizing appropriately, our guess becomes $q(u) = 2^{-\operatorname{length}(c(u))}/(\sum_{v} 2^{-\operatorname{length}(c(v))})$. This choice gives

score(q) =
$$
\sum_{u} p(u) 2^{\text{length}(c(u))} \left(\sum_{v} 2^{-\text{length}(c(v))} \right)
$$

$$
\leq \sum_{u} p(u) 2^{\text{length}(c(u))}
$$

$$
= \mathbb{E}[2^{\text{length}(c(U))}],
$$

where the inequality follows from Kraft's inequality since c is uniquely decodable. The result then follows from part (b) since $\text{score}(q) \geq A^2$.

Fix $\alpha > 0$.

(d) (3 pts) Replace the score function above with $score_{\alpha}(q) = \mathbb{E}[q(U)^{-\alpha}] = \sum_{u}$ $\frac{p(u)}{q(u)^{\alpha}}$. Show that for any q, $\text{score}_{\alpha}(q) \geq (A_{1/1+\alpha})^{1+\alpha}$, with equality if $q = p_{1/1+\alpha}$, where we define $p_s(u) = p(u)^s / A_s$ where $A_s = \sum_u p(u)^s$. Hint: Choose f appropriately and express $\operatorname{score}_{\alpha}(q)$ in terms of $K_f(p_s, q)$ for some s.

Solution: The proof strategy is similar to the one in part (b). Let us consider $f(x) = 1/x^{\alpha}$ (which is indeed convex and decreasing, as required) and show that score_{α} $(q) = (A_{1/1+\alpha})^{1+\alpha} K_f(p_{1/1+\alpha}, q)$. We have

$$
(A_{1/1+\alpha})^{1+\alpha} K_f(p_{1/1+\alpha}, q) = (A_{1/1+\alpha})^{1+\alpha} \sum_{u:p(u)>0} \frac{(p_{1/1+\alpha}(u))^{1+\alpha}}{q(u)^{\alpha}}
$$

$$
= (A_{1/1+\alpha})^{1+\alpha} \sum_{u:p(u)>0} \frac{(p^{1/(1+\alpha)}(u)/A_{1/1+\alpha})^{1+\alpha}}{q(u)^{\alpha}}
$$

$$
= \sum_{u:p(u)>0} \frac{p(u)}{q(u)^{\alpha}}
$$

$$
= \sum_{u} \frac{p(u)}{q(u)^{\alpha}}
$$

$$
= \operatorname{score}_{\alpha}(q).
$$

By the derivation in part (a), $K_f(p_{1/1+\alpha}, q) \ge f(1)$ with equality when $q = p_{1/1+\alpha}$, from which we conclude that $\text{score}_{\alpha}(q) \geq (A_{1/1+\alpha})^{1+\alpha} f(1) = (A_{1/1+\alpha})^{1+\alpha}$ with equality when $q = p_{1/1+\alpha}$.

(e) (2 pts) Show that for any uniquely decodable code $c: \mathcal{U} \to \{0,1\}^*$,

$$
\mathbb{E}[2^{\alpha \,\mathrm{length}(c(U))}] \ge (A_{1/1+\alpha})^{1+\alpha}.
$$

Solution: As in part (c), we select $q(u) = 2^{-\text{length}(c(u))}/(\sum_{v} 2^{-\text{length}(c(v))})$. This choice of distribution gives

score<sub>$$
\alpha
$$</sub>(q) = $\sum_{u} p(u) 2^{\alpha \operatorname{length}(c(u))} \left(\sum_{v} 2^{-\operatorname{length}(c(v))} \right)^{\alpha}$
 $\leq \sum_{u} p(u) 2^{\alpha \operatorname{length}(c(u))}$
 = $\mathbb{E}[2^{\alpha \operatorname{length}(c(U))}],$

where the inequality follows from Kraft's inequality since c is uniquely decodable. The result then follows from part (d) since $\text{score}_{\alpha}(q) \geq (A_{1/1+\alpha})^{1+\alpha}$.

(f) (3 pts) Show that there exists a prefix-free code $c: \mathcal{U} \to \{0,1\}^*$ such that

$$
\mathbb{E}[2^{\alpha \,\mathrm{length}(c(U))}] \leq 2^{\alpha} (A_{1/1+\alpha})^{1+\alpha}.
$$

Solution: Notice that in order to prove an upper-bound on $\mathbb{E}[2^{\alpha \text{ length}(c(U))}]$, we somehow have to make a choice in which $q = p_{1/1+\alpha}$ for otherwise we know from previous parts that we obtain a lower-bound on $\mathbb{E}[2^{\alpha \operatorname{length}(c(U))}]$.

Our strategy is the following: we construct a prefix-free code by choosing the length of codewords according to

$$
length(c(u)) = \left[-\log(p_{1/1+\alpha}(u)) \right], \quad u \in \mathcal{U}.
$$

This choice of lengths satisfies Kraft's inequality, and hence, there exists a prefix-free code with these lengths (such as a Shannon code, see Problem 3 in Homework 2). Thus, we get

$$
\mathbb{E}[2^{\alpha \operatorname{length}(c(U))}] = \sum_{u} p(u) 2^{\alpha \left\lceil -\log(p_{1/1+\alpha}(u)) \right\rceil}
$$

\n
$$
\leq \sum_{u} p(u) 2^{\alpha \left(-\log(p_{1/1+\alpha}(u)) + 1 \right)}
$$

\n
$$
= 2^{\alpha} \sum_{u} p(u) 2^{\log(p_{1/1+\alpha}(u)^{-\alpha})}
$$

\n
$$
= 2^{\alpha} \sum_{u} \frac{p(u)}{p_{1/1+\alpha}(u)^{\alpha}}
$$

\n
$$
= 2^{\alpha} \operatorname{score}_{\alpha}(p_{1/1+\alpha}).
$$

Finally, part (d) tells us that the α -score of $p_{1/1+\alpha}$ is precisely equal to $(A_{1/1+\alpha})^{1+\alpha}$, so that indeed

$$
\mathbb{E}[2^{\alpha \,\mathrm{length}(c(U))}] \leq 2^{\alpha} (A_{1/1+\alpha})^{1+\alpha}.
$$

Remarks: In the lectures, we saw that a possible choice of the score is score $(q) = \mathbb{E}\left[\log \frac{1}{q(U)}\right]$. The problem of minimizing this score is equivalent to the problem of minimizing the expected codeword length (with the identification $q(u) \propto 2^{-\text{length}(c(u))}$), and the minimizer is $q = p$, i.e., length $(c(u)) = -\log p(u)$ rounded up. In this problem, we see how different choices of the score such as $\mathbb{E}[q(U)^{-\alpha}]$ can lead to surprising observations, such as the "best

prediction" not even being $q = p$, but rather $q = p_{1/1+\alpha}$. That is, if the objective is to minimize the expected value of $2^{\alpha \text{ length } c(u)}$ rather than simply length($c(u)$), the optimal choice is length $(c(u)) = -\log p_{1/1+\alpha}$ rounded up. The quantity $\mathbb{E}[2^{\alpha \operatorname{length}(c(\mathcal{U}))}]$ as a function of α is the moment generating function of $\text{length}(c(U))$, which is useful in obtaining tail probability bounds such as $Pr \{ length(c(U)) \ge l \} = Pr \{ 2^{\alpha \operatorname{length}(c(U))} \ge 2^{\alpha l} \} \le 2^{-\alpha l} \mathbb{E}[2^{\alpha \operatorname{length}(c(U))}],$ using the Markov inequality. The quantity $K_f(p,q)$ is called an f-divergence, usually denoted by $D_f(q||p)$, which can be defined for any convex f. A special example is the KL divergence, obtained by taking $f(x) = x \log x$ or $f(x) = -\log x$. If $f(1) = 0$, we get $D_f(p||p) = 0$. Other well-known examples include the squared Hellinger distance, total variation, chi-squared divergence, and so on.

PROBLEM 2. (12 points)

For this problem, we define the following notation different from that used in the lectures. Fix a natural number n. Let (X_1, \ldots, X_n) be a vector of binary random variables, with each X_i taking values in $\{0,1\}$. For $i, j = 1, \ldots, n$, let $X_i^j = (X_i, \ldots, X_j)$ if $i \leq j$ and empty if $i > j$. Let $X_{\neq i}$ denote the vector X_1^n without the i^{th} element, i.e., $X_{\neq i} = (X_1^{i-1}, X_{i+1}^n)$. Also let $X_{(\bar{i})}$ denote the vector X_1^n with its ith element flipped, i.e., $X_{(\bar{i})} = (X_1^{i-1}, 1 - X_i, X_{i+1}^n)$.

(a) (3 pts) Show that $\sum_{i=1}^{n} H(X_i | X_{\neq i}) \leq H(X_1^n)$.

Solution: Using the fact that conditioning reduces entropy, we have

$$
\sum_{i=1}^{n} H(X_i \mid X_{\neq i}) = \sum_{i=1}^{n} H(X_i \mid X_1^{i-1}, X_{i+1}^n)
$$

$$
\leq \sum_{i=1}^{n} H(X_i \mid X_1^{i-1}) = H(X_1^n),
$$

with the last equality immediate from the chain rule of entropy.

Let A be a subset of $\{0,1\}^n$, i.e., A consists of binary vectors of length n. Denote by $E(A)$ the set of pairs of vectors in A that differ at exactly one position, i.e.,

$$
E(A) = \{(x_1^n, \tilde{x}_1^n) \in A \times A \text{ such that } \tilde{x}_i \neq x_i \text{ for exactly one } i\}
$$

= $\{(x_1^n, \tilde{x}_1^n) \in A \times A \text{ such that } \tilde{x}_1^n = x_{(\tilde{i})} \text{ for some } i\}.$

Let (X_1, \ldots, X_n) be randomly and uniformly chosen from A.

(b) (3 pts) Fix $x_1^n \in A$. Compute $H(X_i | X_{\neq i} = x_{\neq i})$. *Hint:* Consider two cases: $x_{(\bar{i})} \in A$ and $x_{(\bar{i})} \notin A$.

Solution: As suggested by the hint, first suppose $x_{(\overline{i})} \in A$. Then, as both x_1^n and $x_{(\overline{i})}$ (which, by definition is the vector x_1^n with the ith element flipped) are in A, given that $X_{\neq i} = x_{\neq i}$, X_i could either be 0 or 1 with equal probability, since X_1^n is picked uniformly from A. Hence, $H(X_i | X_{\neq i} = x_{\neq i}) = 1$ when $x_{(\overline{i})} \in A$. On the other hand, if $x_{(\bar{i})}$ is not in A, then given $X_{\neq i} = x_{\neq i}$, X_i must be equal to the i^{th} element of x_1^n , and hence $H(X_i | X_{\neq i} = x_{\neq i}) = 0$ when $x_{(\bar{i})} \notin A$. Putting the two together, we have $H(X_i | X_{\neq i} = x_{\neq i}) = \mathbb{1}\{x_{(\bar{i})} \in A\}$ for any $x_1^n \in A$.

(c) (3 pts) Show that $H(X_i | X_{\neq i}) = \frac{1}{|A|} \sum_{x_1^n \in A} \mathbb{1}\{x_{(\bar{i})} \in A\}.$

Solution: Let p denote the distribution induced by the uniformly drawn X_1^n . By definition of conditional entropy, $H(X_i | X_{\neq i}) = \sum_{x_{\neq i}} p(x_{\neq i}) H(X_i | X_{\neq i} = x_{\neq i})$. We can write this as

$$
H(X_i | X_{\neq i}) = \sum_{x_{\neq i} \in \{0,1\}^{n-1}} p(x_{\neq i}) H(X_i | X_{\neq i} = x_{\neq i})
$$

=
$$
\sum_{x_{\neq i} \in \{0,1\}^{n-1}} p(x_{\neq i}) \left(\sum_{x_i \in \{0,1\}} p(x_i) \right) H(X_i | X_{\neq i} = x_{\neq i})
$$

=
$$
\sum_{x_1^n \in \{0,1\}^n} p(x_1^n) H(X_i | X_{\neq i} = x_{\neq i})
$$

=
$$
\frac{1}{|A|} \sum_{x_1^n \in A} 1 \{ x_{(\overline{i})} \in A \},
$$

since for a given $x_1^n \in A$, $H(X_i | X_{\neq i} = x_{\neq i}) = \mathbb{1}\{x_{(\overline{i})} \in A\}$. Note that we could not have written this equality without first fixing an x_1^n .

(d) (3 pts) Show that $\sum_{i=1}^{n} H(X_i | X_{\neq i}) = \frac{|E(A)|}{|A|}$ and conclude that $|E(A)| \leq |A| \log |A|$. Hint: Use (a).

Solution: Using the result in (c), we directly have

$$
\sum_{i=1}^{n} H(X_i \mid X_{\neq i}) = \sum_{i=1}^{n} \frac{1}{|A|} \sum_{x_1^n \in A} \mathbb{1} \{ x_{(\overline{i})} \in A \}
$$

$$
= \frac{1}{|A|} \sum_{x_1^n \in A} \sum_{i=1}^{n} \mathbb{1} \{ x_{(\overline{i})} \in A \}.
$$

Observe that for $x_1^n \in A$, $\sum_{i=1}^n \mathbb{1}\{x_{(\bar{i})} \in A\}$ is equal to 1 if either one of $(x_1^n, x_{(\bar{i})})$ or $(x_{(\overline{i})}, x_1^n)$ is in A. Hence, summing this over all x_1^n in A, we get $|E(A)|$, and we have that $\sum_{i=1}^{n} H(X_i | X_{\neq i}) = \frac{|E(A)|}{|A|}$. From part (a), we know that $\sum_{i=1}^{n} H(X_i | X_{\neq i}) \leq$ $H(X_1^n)$, which is in turn less than $\log |A|$ since X_1^n is distributed on A, and we are done.

Remarks: The set $\{0,1\}^n$ is the binary hypercube, equipped with a graph structure by defining the edge relation as in the definition of $E(A)$, i.e., two points in $\{0,1\}^n$ are connected by an edge if they differ at exactly one position. The subset A is then a subgraph of $\{0,1\}^n$ and $E(A)$ is then the set of *directed* edges induced by A. The result in (d) shows that the density of directed edges induced by a subgraph A (i.e., $\frac{|E(A)|}{|A|}$) is at most $\log |A|$ (if we considered unordered pairs in the definition, we would get (undirected) edges and a density of $\frac{1}{2} \log |A|$). Equality occurs if and only if A is a lower-dimensional hypercube in $\{0,1\}^n$ (i.e., X_i are all independent when X_1^n is uniformly distributed on A), so the inequality is tight. See Fig. 1 for an illustration. The inequality derived in part (a) is sometimes called Han's inequality.

PROBLEM 3. (15 points)

Figure 1: Example of binary hypercube with $n = 3$ with the set A_1 marked by red squares and A_2 marked by large blue circles. $|A_1| = 4$, $|E(A)| = 6 < 8 = 4 \cdot 2 = |A_1| \log |A_1|$. $|A_2| = 2$, $|E(A)| = 2 = 2 - 2 \cdot 1 = |A_2| \log |A_2|$.

(a) (2 pts) Suppose p is a probability distribution on $\mathcal U$. Show that for any probability distribution q on U, $\max_{u \in U} \log \frac{p(u)}{q(u)} \ge 0$. Additionally, show that $\min_{q} \max_{u \in U} \log \frac{p(u)}{q(u)} = 0$, where the minimization is over all probability distributions q on \mathcal{U} .

Solution: Recall that the KL divergence $D(p||q)$ between two probability distributions p and q is always non-negative and hence

$$
0 \le D(p||q) = \sum_{u} p(u) \log \frac{p(u)}{q(u)}
$$

$$
\le \sum_{u} p(u) \max_{v} \log \frac{p(v)}{q(v)}
$$

$$
= \left(\max_{v} \log \frac{p(v)}{q(v)}\right) \sum_{u} p(u)
$$

$$
= \max_{v} \log \frac{p(v)}{q(v)}.
$$

Finally, notice that for $q = p$, we have $\max_{v} \log \frac{p(v)}{q(v)} = \log(1) = 0$, so that the minimum over distributions q of $\max_{v} \log \frac{p(v)}{q(v)}$ is in indeed equal to zero.

(b) (2 pts) Show that $\min_{q} \max_{u \in \mathcal{U}} \log \frac{f(u)}{q(u)} = \log K$, where $K = \sum_{u} f(u)$ for a nonnegative function f. *Hint*: Use (a) .

Solution: In order to leverage part (a), we need to deal with probability distributions. Following the hint, we can render $f(u)$ a probability distribution by appropriately normalizing it, that is by considering $p(u) = f(u)/K$. With this, we have

$$
\min_{q} \max_{u \in \mathcal{U}} \log \frac{f(u)}{q(u)} = \min_{q} \max_{u \in \mathcal{U}} \log \frac{Kf(u)}{Kq(u)}
$$

$$
= \min_{q} \max_{u \in \mathcal{U}} \left\{ \log K + \log \frac{f(u)}{Kq(u)} \right\}
$$

$$
= \min_{q} \max_{u \in \mathcal{U}} \log K + \min_{q} \max_{u \in \mathcal{U}} \log \frac{f(u)}{Kq(u)}
$$

$$
= \log K.
$$

Suppose from now on that for every θ in some parameter set Θ , we have a probability distribution p_{θ} on \mathcal{U} .

(c) (2 pts) Show that $\min_{q} \max_{u \in \mathcal{U}, \theta \in \Theta} \log \frac{p_{\theta}(u)}{q(u)} = S$, where $S = \log \sum_{u \in \mathcal{U}}$ $\max_{\theta \in \Theta} p_{\theta}(u).$ Hint: Use (b) .

Solution: The only difference here compared to previous parts is that we have an additional maximum over the parameters θ . By remembering that the logarithm is an increasing function, we can swap a maximum with a log. Formally, this means

$$
\min_{q} \max_{u \in \mathcal{U}, \theta \in \Theta} \log \frac{p_{\theta}(u)}{q(u)} = \min_{q} \max_{u \in \mathcal{U}} \log \frac{\max_{\theta \in \Theta} p_{\theta}(u)}{q(u)}.
$$

It remains to use our result from part (b) with the choice $f(u) = \max_{\theta \in \Theta} p_{\theta}(u)$ (which is indeed nonnegative), so that $K = \sum_{u \in \mathcal{U}} \max_{\theta \in \Theta} p_{\theta}(u)$. Combining everything yields $\min_q \max_{u \in \mathcal{U}, \theta \in \Theta} \log \frac{p_{\theta}(u)}{q(u)} = \log \sum_{u \in \mathcal{U}} \max_{\theta \in \Theta} p_{\theta}(u)$ as expected.

Let us also note that part (a) informs us that the value S is attained for the distribution $q = (\max_{\theta \in \Theta} p_{\theta}(u))/K$.

(d) (3 pts) Suppose we do not know the probability distribution of a random variable U, except that the distribution is one of the p_{θ} above. Show that there is a prefix-free code $c: \mathcal{U} \to \{0,1\}^*$ such that, for every $\theta \in \Theta$ and every $u \in \mathcal{U}$, length $c(u) \leq \log \frac{1}{p_{\theta}(u)} + S + 1$, where S is as in part (c) above.

Solution: We use Shannon coding with codewords lengths given by the probability distribution encountered in part (e), $\max_{\phi \in \Theta} p_{\phi}(u)/K$, where $K = \sum_{u \in \mathcal{U}} \max_{\phi \in \Theta} p_{\phi}(u)$. This choice of lengths satisfies Kraft's inequality, hence there exists a prefix-free code with these codeword lengths. For any $u \in \mathcal{U}$, we have

length
$$
(\mathcal{C}(u)) = \left[-\log \left(\frac{\max_{\phi \in \Theta} p_{\phi}(u)}{K} \right) \right]
$$

\n
$$
\leq \log \left(\frac{1}{(\max_{\phi \in \Theta} p_{\phi}(u))/K} \right) + 1
$$

\n
$$
= \log \left(\frac{p_{\theta}(u)}{(\max_{\phi \in \Theta} p_{\phi}(u))/K} \right) + \log \left(\frac{1}{p_{\theta}(u)} \right) + 1
$$

\n
$$
\leq \max_{u \in \mathcal{U}, \theta \in \Theta} \log \left(\frac{p_{\theta}(u)}{(\max_{\theta \in \Theta} p_{\phi}(u))/K} \right) + \log \left(\frac{1}{p_{\theta}(u)} \right) + 1.
$$

From part (c), we know $\min_q \max_{u \in \mathcal{U}, \theta \in \Theta} \log \frac{p_{\theta}(u)}{q(u)} = S$, with S attained when $q =$ $(\max_{\theta \in \Theta} p_{\theta}(u))/K$. Hence $\max_{u \in \mathcal{U}, \theta \in \Theta} \log \left(\frac{p_{\theta}(u)}{(\max_{\theta \in \Theta} p_{\phi}(u))/K} \right) = S$ and we conclude that

$$
\text{length}(c(u)) \le S + \log\left(\frac{1}{p_{\theta}(u)}\right) + 1.
$$

Suppose we know that U_1, U_2, \ldots , are i.i.d. Bernoulli(θ) random variables, but we do not know the value of $\theta \in [0,1]$. For $u^n \in \{0,1\}^n$, define $p_{\theta}(u^n) = \theta^{k(u^n)}(1-\theta)^{n-k(u^n)}$, where $k(u^n)$ is the number of 1's in the sequence (u_1, \ldots, u_n) . With this definition, $Pr(U^n =$ u^n) = $p_\theta(u^n)$.

(e) (3 pts) Show that for any u^n , we have $\max_{\theta \in [0,1]} p_{\theta}(u^n) = \left(\frac{k}{n}\right)$ $\left(\frac{k}{n}\right)^k\left(1-\frac{k}{n}\right)$ $\frac{k}{n}\big)^{n-k}$ with $k=k(u^n)$, and conclude that

$$
\sum_{u^n \in \{0,1\}^n} \max_{\theta \in [0,1]} p_{\theta}(u^n) = \sum_{i=0}^n {n \choose i} \left(\frac{i}{n}\right)^i \left(1 - \frac{i}{n}\right)^{n-i}.
$$

Hint: Differentiate $\log p_{\theta}(u^n)$ with respect to θ .

Solution: First, notice that the probability of a sequence u^n solely depends on the number of 1's appearing in it. As such, sequences with the same number of 1's are assigned the same probability. Since there are $\binom{n}{k}$ $\binom{n}{k}$ sequences with k ones, we can rewrite the sum over all sequences as follows:

$$
\sum_{u^n \in \{0,1\}^n} \max_{\theta \in [0,1]} \theta^{k(u^n)} (1-\theta)^{n-k(u^n)} = \sum_{k=0}^n \binom{n}{k} \max_{\theta \in [0,1]} \theta^k (1-\theta)^{n-k} \tag{1}
$$

Next, we evaluate $\max_{\theta \in [0,1]} \theta^k (1-\theta)^{n-k}$. Since the logarithm is an increasing function, the parameter θ maximizing $p_{\theta}(u^n)$ is the same as the parameter maximizing $\log p_{\theta}(u^n)$. To find the optimal parameter, compute the derivative of the function $g(\theta) = \log (\theta^k (1-\theta)^{n-k}) = k \log \theta + (n-k) \log(1-\theta)$ and set it to 0. Doing so will give the optimal parameter $\theta^* = \frac{k}{n}$ $\frac{k}{n}$. It remains to show that this is a maximum by inspecting the sign of the second derivative of $g(\theta)$. We find that $g''(\theta) = -\frac{k}{\theta}$. $\frac{k}{\theta^2} - \frac{n-k}{(1-\theta)}$ $\frac{n-k}{(1-\theta)^2} \leq 0,$ so that g is concave and hence θ^* is indeed a maximum.

Overall, we just proved that

$$
\max_{\theta \in [0,1]} \theta^{k(u^n)} (1-\theta)^{n-k(u^n)} = \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k},
$$

and plugging this back in Eq. (1) gives the desired result.

(f) (3 pts) Show that for each *n*, there is a prefix-free code $c_n : \{0,1\}^n \to \{0,1\}^*$ such that, for every $\theta \in [0, 1]$ and every $u^n \in \{0, 1\}^n$,

length
$$
c_n(u^n) \le \log \frac{1}{p_\theta(u^n)} + \log(1+n) + 1.
$$

Hint: Use (d) and (e).

Solution: We know from part (d) that given a family of distribution $(p_\theta)_{\theta \in \Theta}$, designing a Shannon code with the probability distribution given by $\max_{\phi \in \Theta} p_{\phi}(u)/K$, where $K = \sum_{u \in \mathcal{U}} \max_{\phi \in \Theta} p_{\phi}(u)$ will give codewords lengths such that

length
$$
(c(u)) \le \log \sum_{u \in \mathcal{U}} \max_{\theta \in \Theta} p_{\theta}(u) + \log \left(\frac{1}{p_{\theta}(u)}\right) + 1
$$

= $\log \left(\sum_{u \in \mathcal{U}} \max_{\theta \in \Theta} p_{\theta}(u)\right) + \log \left(\frac{1}{p_{\theta}(u)}\right) + 1.$

In this part, the family of distributions is given by $(p_{\theta})_{\theta \in [0,1]}$ where $p_{\theta}(u^n) = \theta^{k(u^n)}(1 \theta$)^{n-k(uⁿ)</sub> and k(uⁿ) is the number of ones in uⁿ. For this family of distributions, the} Shannon coding mentioned above is such that

$$
\text{length}(c(u^n)) \le \log \left(\sum_{u^n \in \{0,1\}^n} \max_{\theta \in [0,1]} \theta^{k(u^n)} (1-\theta)^{n-k(u^n)} \right) + \log \left(\frac{1}{p_{\theta}(u^n)} \right) + 1
$$

and with our result from part (e) we can write

$$
\text{length}(c(u^n)) \le \log \left(\sum_{k=0}^n \binom{n}{k} \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k}\right) + \log \left(\frac{1}{p_\theta(u^n)}\right) + 1. \tag{2}
$$

We see from here that we can reach the desired result if we can show

$$
\sum_{k=0}^{n} \binom{n}{k} \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k} \le n + 1.
$$

To do so, we upper bound each term of that last sum. Since for any $0 \leq k \leq n$, the term $\binom{n}{k}$ $\binom{n}{k}\left(\frac{k}{n}\right)^k\left(1-\frac{k}{n}\right)$ $\frac{k}{n}$ ^{n−k} can be seen as the probability of a binomial random variable with parameter k/n being equal to k (or the probability of observing k heads out of n i.i.d. fair coin tosses), it is upper bounded by 1. Hence,

$$
\sum_{u^n \in \{0,1\}^n} \max_{\theta \in [0,1]} \theta^{k(u^n)} (1-\theta)^{n-k(u^n)} \le n+1,
$$

and using this back in Eq. (2) and dividing by n gives the desired result.

Remarks: Normalizing the result in part (f) by dividing by n, we have $\frac{1}{n}$ length $c_n(u^n) \le$ 1 $\frac{1}{n}\log\frac{1}{p_{\theta}(u^n)}+\frac{1}{n}$ $\frac{1}{n}\log(1+n)+\frac{1}{n}$. As $n\to\infty$, the last two terms go to zero, and we obtain that the lengths of the codewords are nearly $\log \frac{1}{p_{\theta}(u^n)}$, which is what we would have chosen had we known the parameter θ . Thus, this result shows universal compression in a "point-wise" sense — not only can we make the *average lengths* equal to the optimal average without knowing the distribution (as $\mathbb{E}\left[\frac{1}{n}\right]$ $\frac{1}{n} \log \frac{1}{p_{\theta}(U^n)}$ $\big] = H(U)$, but also for each sequence u^n . By a tighter analysis, the $\log(1+n)$ term can be improved to $\log(1+\sqrt{\frac{\pi}{2}n}) \approx \frac{1}{2}$ $\frac{1}{2} \log(1 + n)$.