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Problem 1. The assertion is clearly true with n = 1. To complete the proof by induction
we need to show that the cascade of a BSC with parameter q = 1

2
(1 − (1 − 2p)n) with a

BSC with parameter p is equivalent to a BSC with parameter 1
2
(1− (1−2p)n+1). To do so,

observe that for a cascade of a BSC with parameter q and a BSC with parameter p, when
a bit is sent, the opposite bit will be received if exactly one of the channels makes a flip,
and this happens with probability (1 − q)p + (1 − p)q. Thus, the cascade is equivalent to
a BSC with this parameter. For q = 1

2
(1− (1− 2p)n),

(1− q)p+ (1− p)q =
1

2
(1 + (1− 2p)n)p+

1

2
(1− (1− 2p)n)(1− p) =

1

2
(1− (1− 2p)n+1),

and the assertion is proved.
Alternate proof: the cascade makes flips the incoming bit if an odd number of the

elements of the cascade flip. Thus the cascade is equivalent to a BSC with parameter

a =
∑

k:k odd

(
n

k

)
pk(1− p)n−k.

Let b =
∑

k:k even

(
n
k

)
pk(1− p)n−k. Observe that

a+ b =
∑
k

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1,

and

−a+ b =
∑
k

(
n

k

)
(−p)k(1− p)n−k = (−p+ 1− p)n = (1− 2p)n.

Subtracting the two equalities and dividing by two, we get a = 1
2
(1 + (1− 2p)n).

Problem 2. Let P ′
X,Y (x, y) = PY |X(y|x)Q′(x), P ′

Y (y) =
∑

x∈X P ′
X,Y (x, y) and PY (y) =∑

x∈X PY |X(y|x)Q(x). We then have for any Q′∑
x∈X

Q′(x)
∑
y∈Y

PY |X(y|x) log
(

PY |X(y|x)∑
x′∈X PY |X(y|x′)Q(x′)

)
− I(Q′)

= EP ′
X,Y

log
PY |X

PY

− I(Q′)

= EP ′
X,Y

(
log

PY |X

PY

− log
P ′
X,Y

Q′
XP

′
Y

)
= EP ′

X,Y
log

P ′
Y

PY

= EP ′
Y
log

P ′
Y

PY

= D(P ′
Y ||PY ) ≥ 0

with equality if and only if Q′ = Q. To prove (b), notice in the upper bound of part (a),
that the inner summation is a function of x and that the outer summation is an average
of this function with respect to the distribution Q′(x). The average of a function is upper
bounded by the maximum value that the function takes, and hence (b) follows.



Problem 3. (a) By the chain rule

I(U, T ;V ) = I(U ;V ) + I(T ;V |U) = I(U ;V ),

since I(T ;V |U) = 0 from the Markov property. Also,

I(U, T ;V ) = I(T ;V ) + I(U ;V |T ) ≥ I(U ;V |T ),

from the non-negativity of the mutual information. These together imply that I(U ;V ) ≥
I(U ;V |T ).

(b)
I(X;Y |W ) = Pr{W = 1}I(X;Y |W = 1) + Pr{W = 2}I(X;Y |W = 2)

Conditional on W = k, the distribution of (X, Y ) is pk(x)p(y|x), thus

I(X;Y |W ) = λI1 + (1− λ)I2.

(c) We obtain p(x) by summing p(w, x, y) over y and w. This gives

p(x) = λp1(x) + (1− λ)p2(x).

(d) Note that
p(w, x, y) = p(w)p(x|w)p(y|x),

that is Y is independent of W when X is given. Thus from (a)

I(X;Y ) ≥ I(X;Y |W ). (1)

Letting f(pX) denote the value of I(X;Y ) as a function of the distribution of X we
can rewrite (1) as

f(λp1 + (1− λ)p2) ≥ λf(p1) + (1− λ)f(p2),

which says that f is concave.

Problem 4. Since X and Z are both in the interval [−1, 1], their sum X + Z lies in the
interval [−2,+2]. If we could choose the distribution of X + Z as we wished (without the
constraint that it has to be the sum of two independent random variables, one of which is
uniform) we would have chosen it to be uniform on the interval [−2,+2] to have the largest
entropy. Observe now that if we choose X as the random variable that equals +1 with
probability 1/2 and −1 with probability 1/2, then X + Z is uniform in [−2,+2] and thus
this distribution maximizes the entropy. An alternate derivation is as follows: note that
since X and Z are independent, the moment generating functions of the random variables
involved satisfy E[es(X+Z)] = E[esX ]E[esZ ]. Now, we know that E[esZ ] =

∫
eszfZ(z) dz =∫ +1

−1
1
2
esz dz = [es − e−s]/(2s). Similarly, if we want X +Z to be uniform on [−2, 2], we can

compute E[es(X+Z)] = [e2s−e−2s]/(4s). This then requires E[esX ] = 1
2
[e2s−e−2s]/[es−e−s] =

1
2
[es + e−s] which is the moment generating function of a random variable which takes on

the values +1 and −1, each with probability 1/2.
Similarly, under the constraint XZ lies in the interval [−1,+1], and the best we could

hope is that XZ is uniform on this interval. But this can be achieved by making sure that
X only takes on the values +1 or −1.

Problem 5.
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(a)

I(X;Y ) = I(Xk, K;Yk, K) = I(K;Yk, K) + I(Xk;YK , K|K) = H(K) + I(Xk;Yk|K)

= h2(α) + PK [1].I(Xk;Yk|K = 1) + PK [2]I(Xk;Yk|K = 2)

= h2(α) + α.I(X1;Y1) + (1− α)I(X2;Y2)

(b) The distribution of X is determined by α and by the distributions of X1 and X2.
It is clear from the expression in (a) that for any given α, I(X;Y ) is maximized
when I(X1;Y1) and I(X2;Y2) are maximized, i.e., when the distribution of X1 (resp.
X2) achieves the capacity of P1 (resp. P2). We conclude that the value of α in
the capacity achieving distribution is the one that maximizes the function f(α) =
h2(α) + αC1 + (1− α)C2. The derivative of f is:

f ′(α) = − log2(α)−
1

ln 2
+ log2(1− α) +

1

ln 2
+ C1 − C2 = C1 − C2 + log2

1− α

α
.

We have f ′(α) = 0 (resp. f ′(α) > 0, f ′(α) < 0) if α = α∗ (resp. α < α∗, α > α∗),

where α∗ =
2C1

2C1 + 2C2
. This means that f(α) is maximized at α = α∗. Therefore,

the capacity achieving distribution is such that α =
2C1

2C1 + 2C2
and X1 (resp. X2)

achieves the capacity of the channel P1 (resp. P2).

(c) From (b), we have:

C = − 2C1

2C1 + 2C2
log2

2C1

2C1 + 2C2
− 2C2

2C1 + 2C2
log2

2C2

2C1 + 2C2
+

2C1C1

2C1 + 2C2
+

2C2C2

2C1 + 2C2

= − 2C1

2C1 + 2C2
C1 +

2C1

2C1 + 2C2
log2(2

C1 + 2C2)− 2C2

2C1 + 2C2
C2

+
2C2

2C1 + 2C2
log2(2

C1 + 2C2) +
2C1C1

2C1 + 2C2
+

2C2C2

2C1 + 2C2

= log2(2
C1 + 2C2).

Therefore, 2C = 2C1 + 2C2 .

Problem 6. (a) Since X and Y are independent, H(X, Y ) = H(X)+H(Y ). H(X) can
be found by the following steps.

H(X) = −
∞∑
i=1

(1− p)i−1p log
(
(1− p)i−1p

)
= −

∞∑
i=1

(1− p)i−1p ((i− 1) log(1− p) + log p)

= −p log(1− p)
∞∑
i=1

(1− p)i−1(i− 1)− p log p
∞∑
i=1

(1− p)i−1

= −(1− p) log(1− p)/p− p log p/p

= h2(p)/p.

Similarly, H(Y ) = h2(q)/q, and H(X, Y ) = h2(p)/p+ h2(q)/q.
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(b) Since (X, Y ) → (2X + Y,X − 2Y ) is a 1-to-1 transformation, H(X, Y ) = H(2X +
Y,X − 2Y ). To see this, we can write

H(X, Y, 2X + Y,X − 2Y ) = H(X, Y |2X + Y,X − 2Y ) +H(2X + Y,X − 2Y )

= H(2X + Y,X − 2Y |X, Y ) +H(X, Y )

As H(X, Y |2X + Y,X − 2Y ) = H(2X + Y,X − 2Y |X, Y ) = 0, we obtain H(2X +
Y,X − 2Y ) = H(X, Y ).

(c) Similar to part (a), h(X, Y ) = h(X) + h(Y ). To find h(X), consider the following
steps.

h(X) = −
∫ ∞

0

λXe
−λX t log

(
λXe

−λX t
)
dt

= −
∫ ∞

0

λXe
−λX t log λXdt+

∫ ∞

0

λ2
Xte

−λX tdt

= − log λX − λXE[X]

= 1− log λX

as E[X] = 1/λX . Similarly, h(Y ) = 1− log λY and h(X, Y ) = 2− log λXλY .

(d) Here, we cannot use the fact that (X, Y ) → (2X+Y,X−2Y ) is a 1-to-1 transforma-
tion as h(X, Y ) ̸= h(f(X, Y ), g(X, Y )) in general even if it is a 1-to-1 transformation.
Instead, we use the fact that h(Ax) = h(x) + log |A|. Since we know that

A =

[
2 1
1 −2

]
,

we have h(2X + Y,X − 2Y ) = h(X, Y ) + log |A| = 2− log λXλY

5
.
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