
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Problem 1.
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Note that the result does not depend on σx, σy, which says that normalization does not
change the mutual information.

Problem 2.

(a) This is by the definition of mutual information once we note that pY |X(y|x) = pZ(y−
x).

(b) Note that pX(x)pZ(y − x) is simply the joint distribution of (x, y), and thus the
integral ∫∫
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Substituting the formula for N , this in turn, is
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(c) The steps we need to justify read

ln(1 + P/σ2)− I(X;Y ) =

∫∫
pX(x)pZ(y − x) ln

Nσ2(y − x)pY (y)

Nσ2+P (y)pZ(y − x)
dxdy

≤
∫∫

pX(x)Nσ2(y − x)pY (y)

Nσ2+P (y)
dxdy − 1

=

∫
pY (y) dy − 1

= 0.

The first equality is by substitution of parts (a) and (b). The inequality is by ln(x) ≤
x− 1. The next equality is by noting that∫

pX(x)Nσ2(y − x)dx = (pX ∗ Nσ2)(y) = (NP ∗ Nσ2)(y) = NP+σ2(y).

The last equality is because any density function integrates to 1.

(d) The conclusion is made by noting that the right hand side of the first equality in (c)
is equal to zero if pZ = Nσ2 .

Problem 3. Let the input distribution be p. We thus have

p(−1) + p(0) + p(1) = 1 p(−1) ≥ 0, p(0) ≥ 0, p(1) ≥ 0

(since p is a distribution) and, to satisfy E[b(X)] ≤ β we must have

p(−1) + p(1) = 1− p(0) ≤ β.

Moreover,

I(X;Y ) = H(Y )−H(Y |X)

(a)
= H(Y )− p(0)

(b)

≤ 1− p(0)

(c)

≤ min{1, β}.

where (a) follows because given {X = −1} or {X = 1} there is no uncertainity in Y
while given {X = 0}, Y is uniformly distributed in {−1, 1}, (b) holds since Y is binary
with equality if p(−1) + 1

2
p(0) = p(1) + 1

2
p(0) = 1

2
(which happens if we choose p(1) =

p(−1) = 1
2
(1 − p(0))) and (c) holds because of the cost constraint and is equality if we

choose p(0) = max{1− β, 0}. Hence, the capacity is

C =

{
β, if β ≤ 1

1, if β > 1
.

Problem 4. (a) All rates less than 1
2
log2(1 +

P
σ2 ) are achievable.

(b) The new noise Z1 − ρZ2 has zero mean and variance E((Z1 − ρZ2)
2) = σ2(1 − ρ2).

Therefore, all rates less than 1
2
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P
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) are achievable.
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(c) The capacity is C = max I(X;Y1, Y2) = max(h(Y1, Y2) − h(Z1, Z2)) = 1
2
log2(1 +

P
σ2(1−ρ2)

). This shows that the scheme used in (b) is a way to achieve capacity.

Problem 5. (a) In this exercise we assume all the vectors are column vectors. We know
that (X1, · · · , Xn, Y1, · · · , Ym) are jointly Gaussian random variables if and only if
any linear combination of these variables is normally distributed. This means that
any linear combination of X = (X1, X2, · · · , Xn) is normally distributed and thus X
is an n Gaussian random vector. Similarly, the vector Y = (Y1, · · · , Ym) is an m
dimensional random vector.

Moreover, we can write (X1, · · · , Xn, Y1, · · · , Ym) = (X,Y). So its covariance matrix
is
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)
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)
. Thus the vector X = (X1, · · · , Xn) is

normally distributed with covariance matrix K11 and the vector Y = (Y1, · · · , Ym) is
normally distributed with covariance matrix K22.

Hence, using the results derived in class we get
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(b) Let A11 be an n × n matrix and A22 be an m × m matrix. So A becomes an (n +
m)× (n+m) matrix. Since A is a positive definite matrix then there exists an n+m
dimensional Gaussian random vector which covariance matrix is A. Let’s denote this
vector as (X1, · · · , Xn, Y1, · · · , Ym). From question (a) we know that
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Moreover, we know that

h (X1, · · · , Xn, Y1, · · · , Ym) ≤ h (X1, · · · , Xn) + h (Y1, · · · , Ym) .

So,
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(2πe)n+mdet (A) ≤ (2πe)ndet (A11)× (2πe)mdet (A22)

det(A) ≤ det(A11)det(A22).
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