ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 24	Information Theory and Coding
Solutions to Homework 10	Nov. 26, 2024

PROBLEM 1. As we should never represent a 0 with a 1, we are restricted to conditional distributions with $p_{V|U}(1|0) = 0$. Consequently, the possible $p_{V|U}$ are of the type

$$p_{V|U}(0|0) = 1$$
 $p_{V|U}(1|0) = 0$, $p_{V|U}(0|1) = \alpha$ $p_{V|U}(1|1) = 1 - \alpha$,

and parametrized by $\alpha \in [0,1]$. For $p_{V|U}$ as above, we have $\Pr(V=1) = \frac{1}{2}(1-\alpha)$, and

$$E[d(U,V)] = \sum_{u,v} p_U(u) p_{V|U}(v|u) d(u,v) = \alpha/2,$$

$$I(U;V) = H(V) - H(V|U) = h_2(\frac{1}{2}(1-\alpha)) - \frac{1}{2}h_2(\alpha) =: f(\alpha).$$

Thus $R(D) = \min\{f(\alpha) : 0 \le \alpha \le \min\{1, 2D\}\}$, with $f(\alpha) = h_2(\frac{1}{2}(1-\alpha)) - \frac{1}{2}h_2(\alpha)$. It is not difficult to check that f is a decreasing function on the interval [0, 1], and thus consequently

$$R(D) = \begin{cases} h_2(\frac{1}{2} - D) - \frac{1}{2}h_2(2D), & 0 \le D < \frac{1}{2} \\ 0, & D \ge \frac{1}{2}. \end{cases}$$

Note that for $D \ge \frac{1}{2}$ we can represent any u with a constant, namely v = 0, with average distortion 1/2.

Problem 2.

(a) Given D_1 , D_2 and $0 \le \lambda \le 1$ we need to show that $\phi(D) \ge \lambda \phi(D_1) + (1 - \lambda)\phi(D_2)$. Suppose $p_{Z_1^*}$ and $p_{Z_2^*}$ be the distributions on Z that achieve the maximization that define ϕ for D_1 and D_2 , namely, $\phi(D_1) = H(Z_1^*)$ and $\phi(D_2) = H(Z_2^*)$ with $E[g(Z_1^*)] \le D_1$ and $E[g(Z_2^*)] \le D_2$. Consider now the distribution $p_{Z^*} = \lambda p_{Z_1^*} + (1 - \lambda)p_{Z_2^*}$. For Z^* having this distribution

$$E[g(Z^*)] = \sum_{z} p_{Z^*}(z)g(z) = \lambda \sum_{z} p_{Z^*_1}(z)g(z) + (1-\lambda) \sum_{z} p_{Z^*_2}(z)g(z)$$
$$= \lambda E[g(Z^*_1)] + (1-\lambda)E[g(Z^*_2)] \le \lambda D_1 + (1-\lambda)D_2 = D,$$

and because of the concavity of H, $H(Z^*) \ge \lambda H(Z_1^*) + (1-\lambda)H(Z_2^*) = \lambda \phi(D_1) + (1-\lambda)\phi(D_2)$. As $\phi(D)$ is the maximum of H(Z) over all Z with $E[g(Z)] \le D$, $\phi(D) \ge H(Z^*)$.

(b) In the (in)equalities

$$I(U;V) \stackrel{(b1)}{=} H(U) - H(U|V)$$
$$\stackrel{(b2)}{=} H(U) - H(U \ominus V|V)$$
$$\stackrel{(b3)}{\geq} H(U) - H(U \ominus V)$$
$$\stackrel{(b4)}{\geq} H(U) - \phi(D)$$

(b1) is by definition of mutual information, (b2) because for a given V, U and $U \ominus V$ are in one-to-one correspondence, (b3) because conditioning reduces entropy and (b4) because $Z = U \ominus V$ has $E[g(Z)] \leq D$.

- (c) As $R(D) = \min\{I(U; V) : E[d(U, V)] \le D\}$, and by (b) for any U, V with $E[d(U, V)] \le D$ we have $I(U; V) \ge H(U) \phi(D)$, the conclusion follows.
- (d) Let Z be independent of U and have a distribution that achieves $\phi(D)$. Set $V = U \ominus Z$. Now,

 $p_{Z,V}(z,v) = p_{Z,U}(z,z\oplus v) = p_Z(z)p_U(z\oplus v) = p_Z(z)/|\mathcal{U}|.$

By summing over z we see that V is uniformly distributed, and also that V is independent of $Z = U \ominus V$. Observe that the only inequalities in (b) were in (b3) and (b4), but in this case they are both equalities: (b3) because of the independence of $Z = U \ominus V$ and V, and (b4) because $H(Z) = \phi(D)$.

PROBLEM 3. (a) $I(U;V) = h(U) - h(U|V) = h(U) - h(U - V|V) \ge h(U) - h(U - V) = h(U) - h(Z)$ where Z := U - V. Now let us minimize the lower bound. Since U has a fixed distribution, the problem is equivalent to maximizing h(Z) under the constraint $E[Z^2] \le D$. From the lectures, we know that such distribution is a zero-mean Gaussian with variance D. Therefore we obtain

$$R(D) = \min_{\substack{P_{V|U}:\\E[(U-V)^2] \le D}} I(U;V) \ge \min_{\substack{P_{V|U}:\\E[(U-V)^2] \le D}} h(U) - h(Z) \ge h(U) - \frac{1}{2}\log(2\pi eD).$$

- (b) Suppose $p_{V|U}^*$ is the distribution achieving the minimum in R(D), and $E[(U-V)^2] = D^*$ for such choice of $p_{V|U}^*$. First, we prove that E[U] = E[V]. Suppose $E[U] = \mu_U \neq E[V] = \mu_V$ and let $\tilde{U} := U \mu_U$, $\tilde{V} := V \mu_V$ be centered versions of U, V. Then, $E[(U-V)^2] = E[(\tilde{U} - \mu_U - \tilde{V} + \mu_V)^2] = E[(\tilde{U} - \tilde{V})^2] + (\mu_U - \mu_V)^2$. Since shifts do not change the mutual information and thus $I(U;V) = I(U;V - \mu_V + \mu_U)$, one can always make $\mu_U = \mu_V$ and achieve a smaller distortion than $E[(U-V)^2]$ by eliminating the $(\mu_U - \mu_V)^2$ term. Hence, μ_U must be equal to μ_V . In this case, $E[(\tilde{U} - \tilde{V})^2] = D^*$ and both I(U;V) and D^* does not depend on the mean of U.
- (c) First, we show b = 0. $E[(U-\hat{U})^2] = E[(U-aV-b)^2] = E[(U-aV)^2] 2E[(U-aV)]b + b^2 = E[(U-aV)^2] + b^2$ as both U and V are zero-mean. Hence b must be 0 to minimize $E[(U-\hat{U})^2]$. For b = 0, $E[(U-\hat{U})^2] = E[(U-aV)^2] = E[U^2] 2aE[UV] + a^2E[V^2]$. Since this is a quadratic function of a, it is minimized at $a = \frac{E[UV]}{E[V^2]} = \frac{\sigma^2}{\sigma^2 + \sigma_Z^2}$ and the minimum value turns out to be $\frac{\sigma^2 \sigma_Z^2}{\sigma^2 + \sigma_Z^2}$.
- (d) Observe that the above channel is an additive Gaussian noise channel. We know that the mutual information between the input and the output is upper bounded by $\frac{1}{2}\log\left(1+\frac{\operatorname{Var}(U)}{\sigma_{\tau}^2}\right)$.
- (e) Let $\tilde{V} = \hat{U} = aV$, where \hat{U} and a are as in part (b) and (c). Now, observe that the $E[(U \tilde{V})^2] = \frac{\sigma^2 \sigma_Z^2}{\sigma^2 + \sigma_Z^2}$ and $I(U; \tilde{V}) = I(U; V) \leq \frac{1}{2} \log \left(1 + \frac{\sigma^2}{\sigma_Z^2}\right) = \frac{1}{2} \log \left(\frac{\sigma^2}{E[(U \tilde{V})^2]}\right)$. Given $D \leq \sigma^2$, we can choose σ_Z^2 to ensure $E[(U - \tilde{V})^2] = D$, so $R(D) \leq I(U; \tilde{V}) \leq \frac{1}{2} \log \left(\frac{\sigma^2}{D}\right)$.
- PROBLEM 4. (a) Observe that for any $i \in J(x)$, $E[\mathbbm{1}\{Y_i = y\}] = p_{Y|X}(y|x)$. Therefore, $E[N(x,y)] = |J(x)|p_{Y|X}(y|x)$. Since $x^n \in T(n, p_x, \epsilon)$, we have $(1-\epsilon)np(x) \leq |J(x)| \leq (1+\epsilon)np(x)$. Hence, $(1-\epsilon)np(x,y) \leq E[N(x,y)] \leq (1+\epsilon)np(x,y)$. We also have $\operatorname{Var}(N(x,y)) = \operatorname{Var}\left(\sum_{i \in J(x)} \mathbbm{1}\{Y_i = y\}\right) = \sum_{i \in J(x)} \operatorname{Var}(\mathbbm{1}\{Y_i = y\})$ because Y_i 's are chosen i.i.d. and $\sum_{i \in J(x)} \operatorname{Var}(\mathbbm{1}\{Y_i = y\}) \leq |J(x)| \leq n$ because we know that for a random variable that takes binary values, its variance can be at most 1.

(b) Write

$$\Pr(N(x,y) < np(x,y)(1-\epsilon')) \le \Pr(N(x,y) - E[N(x,y)] < np(x,y)(\epsilon-\epsilon')).$$

As $\epsilon' > \epsilon$, we can apply Chebyshev's inequality to the rightmost term to obtain

$$\Pr(N(x,y) < np(x,y)(1-\epsilon')) \le \frac{\operatorname{Var}(N(x,y))}{n^2 p(x,y)^2 (\epsilon'-\epsilon)^2} \le \frac{1}{np(x,y)^2 (\epsilon'-\epsilon)^2},$$

which tends to 0 as $n \to \infty$. Proceed similarly to obtain the same result for $\Pr(N(x, y) > np(x, y)(1 + \epsilon'))$.

For $\epsilon' < \epsilon$; it is not guaranteed that the above expressions tend to zero for all $x^n \in T(n, p_x, \epsilon)$. In fact, had we taken a $x^n \in T(n, p_x, \epsilon)$, but $x^n \notin T(n, p_x, \epsilon')$; we would have at least one $x \in \mathcal{X}$ such that $J(x) > (1 + \epsilon')np(x)$ and $E[N(x, y)] > (1 + \epsilon')np(x, y)$, which makes it impossible for $\Pr(N(x, y) > (1 + \epsilon')np(x, y))$ to go to zero.

(c)

$$\Pr((x^{n},Y^{n}) \notin T(n,p_{XY},\epsilon')) = \Pr(\exists x, y \in \mathcal{X} \times \mathcal{Y} : N(x,y) \notin [(1-\epsilon')np(x,y), (1+\epsilon')np(x,y)]) \\ \leq \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \left[\Pr(N(x,y) < np(x,y)(1-\epsilon')) + \Pr(N(x,y) > np(x,y)(1+\epsilon')) \right] \\ \leq \frac{1}{n} \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \frac{2}{p(x,y)^{2}(\epsilon'-\epsilon)^{2}},$$

which tends to 0 as $n \to \infty$.

(d) With (U, X) playing the role of X in (a,b,c), we see that the event we ask is exactly the complement of the event in (c). Therefore, its probability goes to 1.