ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

PROBLEM 1. As we should never represent a 0 with a 1, we are restricted to conditional distributions with $p_{V|U} (1|0) = 0$. Consequently, the possible $p_{V|U}$ are of the type

 $p_{V|U} (0|0) = 1$ $p_{V|U} (1|0) = 0$, $p_{V|U} (0|1) = \alpha$ $p_{V|U} (1|1) = 1 - \alpha$,

and parametrized by $\alpha \in [0,1]$. For $p_{V|U}$ as above, we have $Pr(V = 1) = \frac{1}{2}(1 - \alpha)$, and

$$
E[d(U,V)] = \sum_{u,v} p_U(u)p_{V|U}(v|u)d(u,v) = \alpha/2,
$$

$$
I(U;V) = H(V) - H(V|U) = h_2(\frac{1}{2}(1-\alpha)) - \frac{1}{2}h_2(\alpha) =: f(\alpha).
$$

Thus $R(D) = \min\{f(\alpha) : 0 \leq \alpha \leq \min\{1, 2D\}\}\$, with $f(\alpha) = h_2(\frac{1}{2})$ $\frac{1}{2}(1-\alpha)\bigg(-\frac{1}{2}\bigg)$ $\frac{1}{2}h_2(\alpha)$. It is not difficult to check that f is a decreasing function on the interval $[0, 1]$, and thus consequently

$$
R(D) = \begin{cases} h_2(\frac{1}{2} - D) - \frac{1}{2}h_2(2D), & 0 \le D < \frac{1}{2} \\ 0, & D \ge \frac{1}{2}. \end{cases}
$$

Note that for $D \geq \frac{1}{2}$ we can represent any u with a constant, namely $v = 0$, with average distortion 1/2.

PROBLEM 2.

(a) Given D_1 , D_2 and $0 \leq \lambda \leq 1$ we need to show that $\phi(D) \geq \lambda \phi(D_1) + (1 - \lambda) \phi(D_2)$. Suppose $p_{Z_1^*}$ and $p_{Z_2^*}$ be the distributions on Z that achieve the maximization that define ϕ for D_1 and D_2 , namely, $\phi(D_1) = H(Z_1^*)$ and $\phi(D_2) = H(Z_2^*)$ with $E[g(Z_1^*)] \leq$ D_1 and $E[g(Z_2^*)] \leq D_2$. Consider now the distribution $p_{Z^*} = \lambda p_{Z_1^*} + (1 - \lambda)p_{Z_2^*}$. For Z [∗] having this distribution

$$
E[g(Z^*)] = \sum_z p_{Z*}(z)g(z) = \lambda \sum_z p_{Z_1^*}(z)g(z) + (1 - \lambda) \sum_z p_{Z_2^*}(z)g(z)
$$

= $\lambda E[g(Z_1^*)] + (1 - \lambda)E[g(Z_2^*)] \leq \lambda D_1 + (1 - \lambda)D_2 = D,$

and because of the concavity of H, $H(Z^*) \geq \lambda H(Z_1^*) + (1 - \lambda)H(Z_2^*) = \lambda \phi(D_1) +$ $(1 - \lambda)\phi(D_2)$. As $\phi(D)$ is the maximum of $H(Z)$ over all Z with $E[g(Z)] \leq D$, $\phi(D) \geq H(Z^*).$

(b) In the (in)equalities

$$
I(U;V) \stackrel{\text{(b1)}}{=} H(U) - H(U|V)
$$

\n
$$
\stackrel{\text{(b2)}}{=} H(U) - H(U \oplus V|V)
$$

\n
$$
\stackrel{\text{(b3)}}{>} H(U) - H(U \oplus V)
$$

\n
$$
\stackrel{\text{(b4)}}{>} H(U) - \phi(D)
$$

(b1) is by definition of mutual information, (b2) because for a given V, U and $U \oplus V$ are in one-to-one correspondence, (b3) because conditioning reduces entropy and (b4) because $Z = U \ominus V$ has $E[g(Z)] \leq D$.

- (c) As $R(D) = \min\{I(U;V) : E[d(U,V)] \leq D\}$, and by (b) for any U, V with $E[d(U,V)] \leq D\}$ D we have $I(U;V) \geq H(U) - \phi(D)$, the conclusion follows.
- (d) Let Z be independent of U and have a distribution that achieves $\phi(D)$. Set $V = U \oplus Z$. Now,

 $p_{Z,V}(z, v) = p_{Z,U}(z, z \oplus v) = p_Z(z)p_U(z \oplus v) = p_Z(z)/|U|.$

By summing over z we see that V is uniformly distributed, and also that V is independent of $Z = U \oplus V$. Observe that the only inequalities in (b) were in (b3) and (b4), but in this case they are both equalities: (b3) because of the independence of $Z = U \oplus V$ and V, and (b4) because $H(Z) = \phi(D)$.

PROBLEM 3. (a) $I(U; V) = h(U) - h(U|V) = h(U) - h(U - V|V) \ge h(U) - h(U - V) =$ $h(U) - h(Z)$ where $Z := U - V$. Now let us minimize the lower bound. Since U has a fixed distribution, the problem is equivalent to maximizing $h(Z)$ under the constraint $E[Z^2] \leq D$. From the lectures, we know that such distribution is a zeromean Gaussian with variance D. Therefore we obtain

$$
R(D) = \min_{\substack{P_{V|U^{\perp}} \ E[(U-V)^{2}] \le D}} I(U;V) \ge \min_{\substack{P_{V|U^{\perp}} \ E[(U-V)^{2}] \le D}} h(U) - h(Z) \ge h(U) - \frac{1}{2} \log(2\pi e D).
$$

- (b) Suppose $p_{V|U}^*$ is the distribution achieving the minimum in $R(D)$, and $E[(U-V)^2] =$ D^* for such choice of $p^*_{V|U}$. First, we prove that $E[U] = E[V]$. Suppose $E[U] =$ $\mu_U \neq E[V] = \mu_V$ and let $\tilde{U} := U - \mu_U, \tilde{V} := V - \mu_V$ be centered versions of U, V. Then, $E[(U - V)^2] = E[(\tilde{U} - \mu_U - \tilde{V} + \mu_V)^2] = E[(\tilde{U} - \tilde{V})^2] + (\mu_U - \mu_V)^2$. Since shifts do not change the mutual information and thus $I(U; V) = I(U; V - \mu_V + \mu_U)$, one can always make $\mu_U = \mu_V$ and achieve a smaller distortion than $E[(U - V)^2]$ by eliminating the $(\mu_U - \mu_V)^2$ term. Hence, μ_U must be equal to μ_V . In this case, $E[(\tilde{U} - \tilde{V})^2] = D^*$ and both $I(U;V)$ and D^* does not depend on the mean of U.
- (c) First, we show $b = 0$. $E[(U \hat{U})^2] = E[(U aV b)^2] = E[(U aV)^2] 2E[(U aV)]b +$ $b^2 = E[(U - aV)^2] + b^2$ as both U and V are zero-mean. Hence b must be 0 to minimize $E[(U - \hat{U})^2]$. For $b = 0$, $E[(U - \hat{U})^2] = E[(U - aV)^2] = E[U^2] - 2aE[UV] + a^2E[V^2]$. Since this is a quadratic function of a, it is minimized at $a = \frac{E[UV]}{E[V^2]} = \frac{\sigma^2}{\sigma^2 + \sigma^2}$ $\frac{\sigma^2}{\sigma^2 + \sigma_Z^2}$ and the minimum value turns out to be $\frac{\sigma^2 \sigma_Z^2}{\sigma^2 + \sigma_Z^2}$.
- (d) Observe that the above channel is an additive Gaussian noise channel. We know that the mutual information between the input and the output is upper bounded by 1 $\frac{1}{2} \log \left(1 + \frac{\text{Var}(U)}{\sigma_Z^2} \right).$
- (e) Let $\tilde{V} = \hat{U} = aV$, where \hat{U} and a are as in part (b) and (c). Now, observe that the $E[(U - \tilde{V})^2] = \frac{\sigma^2 \sigma_Z^2}{\sigma^2 + \sigma_Z^2}$ and $I(U; \tilde{V}) = I(U; V) \le \frac{1}{2}$ $rac{1}{2} \log \left(1 + \frac{\sigma^2}{\sigma_{\sigma}^2} \right)$ $\frac{\sigma^2}{\sigma_Z^2}$ = $\frac{1}{2}$ $\frac{1}{2} \log \left(\frac{\sigma^2}{E[(U E[(U-\tilde{V})^2]$. Given $D \leq \sigma^2$, we can choose σ_Z^2 to ensure $E[(U - \tilde{V})^2] = D$, so $R(D) \leq I(U; \tilde{V}) \leq$ 1 $rac{1}{2} \log \left(\frac{\sigma^2}{D} \right)$ $\frac{\sigma^2}{D}$.
- PROBLEM 4. (a) Observe that for any $i \in J(x)$, $E[\mathbb{1}\{Y_i = y\}] = p_{Y|X}(y|x)$. Therefore, $E[N(x,y)] = |J(x)|p_{Y|X}(y|x)$. Since $x^n \in T(n, p_x, \epsilon)$, we have $(1-\epsilon)np(x) \leq |J(x)| \leq$ $(1 + \epsilon)np(x)$. Hence, $(1 - \epsilon)np(x, y) \le E[N(x, y)] \le (1 + \epsilon)np(x, y)$. We also have $Var(N(x, y)) = Var\left(\sum_{i \in J(x)} \mathbb{1}\{Y_i = y\}\right) = \sum_{i \in J(x)} Var(\mathbb{1}\{Y_i = y\})$ because Y_i 's are chosen i.i.d. and $\sum_{i\in J(x)} \text{Var}(\mathbb{1}\{Y_i = y\}) \leq |J(x)| \leq n$ because we know that for a random variable that takes binary values, its variance can be at most 1.

(b) Write

$$
\Pr(N(x,y) < np(x,y)(1-\epsilon')) \le \Pr(N(x,y) - E[N(x,y)] < np(x,y)(\epsilon - \epsilon')).
$$

As $\epsilon' > \epsilon$, we can apply Chebyshev's inequality to the rightmost term to obtain

$$
\Pr(N(x, y) < np(x, y)(1 - \epsilon')) \le \frac{\text{Var}(N(x, y))}{n^2 p(x, y)^2 (\epsilon' - \epsilon)^2} \le \frac{1}{np(x, y)^2 (\epsilon' - \epsilon)^2},
$$

which tends to 0 as $n \to \infty$. Proceed similarly to obtain the same result for $Pr(N(x, y) >$ $np(x, y)(1 + \epsilon^{\prime})).$

For $\epsilon' < \epsilon$; it is not guaranteed that the above expressions tend to zero for all $x^n \in$ $T(n, p_x, \epsilon)$. In fact, had we taken a $x^n \in T(n, p_x, \epsilon)$, but $x^n \notin T(n, p_x, \epsilon)$; we would have at least one $x \in \mathcal{X}$ such that $J(x) > (1 + \epsilon')np(x)$ and $E[N(x, y)] > (1 + \epsilon')np(x)$ ϵ')n $p(x, y)$, which makes it impossible for $Pr(N(x, y) > (1 + \epsilon')np(x, y))$ to go to zero.

(c)

$$
\Pr((x^n, Y^n) \notin T(n, p_{XY}, \epsilon'))
$$
\n
$$
= \Pr(\exists x, y \in \mathcal{X} \times \mathcal{Y} : N(x, y) \notin [(1 - \epsilon')np(x, y), (1 + \epsilon')np(x, y)])
$$
\n
$$
\leq \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \left[\Pr(N(x, y) < np(x, y)(1 - \epsilon')) + \Pr(N(x, y) > np(x, y)(1 + \epsilon')) \right]
$$
\n
$$
\leq \frac{1}{n} \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \frac{2}{p(x, y)^2 (\epsilon' - \epsilon)^2},
$$

which tends to 0 as $n \to \infty$.

(d) With (U, X) playing the role of X in (a, b, c) , we see that the event we ask is exactly the complement of the event in (c). Therefore, its probability goes to 1.