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Problem 1. As we should never represent a 0 with a 1, we are restricted to conditional
distributions with pV |U(1|0) = 0. Consequently, the possible pV |U are of the type

pV |U(0|0) = 1 pV |U(1|0) = 0, pV |U(0|1) = α pV |U(1|1) = 1− α,

and parametrized by α ∈ [0, 1]. For pV |U as above, we have Pr(V = 1) = 1
2
(1− α), and

E[d(U, V )] =
∑
u,v

pU(u)pV |U(v|u)d(u, v) = α/2,

I(U ;V ) = H(V )−H(V |U) = h2

(
1
2
(1− α)

)
− 1

2
h2(α) =: f(α).

Thus R(D) = min
{
f(α) : 0 ≤ α ≤ min{1, 2D}

}
, with f(α) = h2

(
1
2
(1 − α)

)
− 1

2
h2(α).

It is not difficult to check that f is a decreasing function on the interval [0, 1], and thus
consequently

R(D) =

{
h2(

1
2
−D)− 1

2
h2(2D), 0 ≤ D < 1

2

0, D ≥ 1
2
.

Note that for D ≥ 1
2
we can represent any u with a constant, namely v = 0, with average

distortion 1/2.

Problem 2.

(a) Given D1, D2 and 0 ≤ λ ≤ 1 we need to show that ϕ(D) ≥ λϕ(D1) + (1− λ)ϕ(D2).
Suppose pZ∗

1
and pZ∗

2
be the distributions on Z that achieve the maximization that

define ϕ forD1 andD2, namely, ϕ(D1) = H(Z∗
1) and ϕ(D2) = H(Z∗

2) with E[g(Z∗
1)] ≤

D1 and E[g(Z∗
2)] ≤ D2. Consider now the distribution pZ∗ = λpZ∗

1
+ (1− λ)pZ∗

2
. For

Z∗ having this distribution

E[g(Z∗)] =
∑
z

pZ∗(z)g(z) = λ
∑
z

pZ∗
1
(z)g(z) + (1− λ)

∑
z

pZ∗
2
(z)g(z)

= λE[g(Z∗
1)] + (1− λ)E[g(Z∗

2)] ≤ λD1 + (1− λ)D2 = D,

and because of the concavity of H, H(Z∗) ≥ λH(Z∗
1) + (1 − λ)H(Z∗

2) = λϕ(D1) +
(1 − λ)ϕ(D2). As ϕ(D) is the maximum of H(Z) over all Z with E[g(Z)] ≤ D,
ϕ(D) ≥ H(Z∗).

(b) In the (in)equalities

I(U ;V )
(b1)
= H(U)−H(U |V )

(b2)
= H(U)−H(U ⊖ V |V )

(b3)

≥ H(U)−H(U ⊖ V )

(b4)

≥ H(U)− ϕ(D)

(b1) is by definition of mutual information, (b2) because for a given V , U and U ⊖V
are in one-to-one correspondence, (b3) because conditioning reduces entropy and (b4)
because Z = U ⊖ V has E[g(Z)] ≤ D.



(c) AsR(D) = min{I(U ;V ) : E[d(U, V )] ≤ D}, and by (b) for any U, V with E[d(U, V )] ≤
D we have I(U ;V ) ≥ H(U)− ϕ(D), the conclusion follows.

(d) Let Z be independent of U and have a distribution that achieves ϕ(D). Set V = U⊖Z.
Now,

pZ,V (z, v) = pZ,U(z, z ⊕ v) = pZ(z)pU(z ⊕ v) = pZ(z)/|U|.
By summing over z we see that V is uniformly distributed, and also that V is inde-
pendent of Z = U ⊖ V . Observe that the only inequalities in (b) were in (b3) and
(b4), but in this case they are both equalities: (b3) because of the independence of
Z = U ⊖ V and V , and (b4) because H(Z) = ϕ(D).

Problem 3. (a) I(U ;V ) = h(U)−h(U |V ) = h(U)−h(U −V |V ) ≥ h(U)−h(U −V ) =
h(U) − h(Z) where Z := U − V . Now let us minimize the lower bound. Since U
has a fixed distribution, the problem is equivalent to maximizing h(Z) under the
constraint E[Z2] ≤ D. From the lectures, we know that such distribution is a zero-
mean Gaussian with variance D. Therefore we obtain

R(D) = min
PV |U :

E[(U−V )2]≤D

I(U ;V ) ≥ min
PV |U :

E[(U−V )2]≤D

h(U)− h(Z) ≥ h(U)− 1
2
log(2πeD).

(b) Suppose p∗V |U is the distribution achieving the minimum in R(D), and E[(U −V )2] =

D∗ for such choice of p∗V |U . First, we prove that E[U ] = E[V ]. Suppose E[U ] =

µU ̸= E[V ] = µV and let Ũ := U − µU , Ṽ := V − µV be centered versions of U , V .
Then, E[(U − V )2] = E[(Ũ − µU − Ṽ + µV )

2] = E[(Ũ − Ṽ )2] + (µU − µV )
2. Since

shifts do not change the mutual information and thus I(U ;V ) = I(U ;V − µV + µU),
one can always make µU = µV and achieve a smaller distortion than E[(U − V )2]
by eliminating the (µU − µV )

2 term. Hence, µU must be equal to µV . In this case,
E[(Ũ − Ṽ )2] = D∗ and both I(U ;V ) and D∗ does not depend on the mean of U .

(c) First, we show b = 0. E[(U−Û)2] = E[(U−aV −b)2] = E[(U−aV )2]−2E[(U−aV )]b+
b2 = E[(U−aV )2]+b2 as both U and V are zero-mean. Hence bmust be 0 to minimize
E[(U − Û)2]. For b = 0, E[(U − Û)2] = E[(U − aV )2] = E[U2]− 2aE[UV ] + a2E[V 2].

Since this is a quadratic function of a, it is minimized at a = E[UV ]
E[V 2]

= σ2

σ2+σ2
Z
and the

minimum value turns out to be
σ2σ2

Z

σ2+σ2
Z
.

(d) Observe that the above channel is an additive Gaussian noise channel. We know
that the mutual information between the input and the output is upper bounded by
1
2
log

(
1 + Var(U)

σ2
Z

)
.

(e) Let Ṽ = Û = aV , where Û and a are as in part (b) and (c). Now, observe that the

E[(U − Ṽ )2] =
σ2σ2

Z

σ2+σ2
Z
and I(U ; Ṽ ) = I(U ;V ) ≤ 1

2
log

(
1 + σ2

σ2
Z

)
= 1

2
log

(
σ2

E[(U−Ṽ )2]

)
.

Given D ≤ σ2, we can choose σ2
Z to ensure E[(U − Ṽ )2] = D, so R(D) ≤ I(U ; Ṽ ) ≤

1
2
log

(
σ2

D

)
.

Problem 4. (a) Observe that for any i ∈ J(x), E[1{Yi = y}] = pY |X(y|x). Therefore,
E[N(x, y)] = |J(x)|pY |X(y|x). Since xn ∈ T (n, px, ϵ), we have (1−ϵ)np(x) ≤ |J(x)| ≤
(1 + ϵ)np(x). Hence, (1 − ϵ)np(x, y) ≤ E[N(x, y)] ≤ (1 + ϵ)np(x, y). We also have
Var(N(x, y)) = Var

(∑
i∈J(x) 1{Yi = y}

)
=

∑
i∈J(x) Var(1{Yi = y}) because Yi’s are

chosen i.i.d. and
∑

i∈J(x) Var(1{Yi = y}) ≤ |J(x)| ≤ n because we know that for a
random variable that takes binary values, its variance can be at most 1.
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(b) Write

Pr(N(x, y) < np(x, y)(1− ϵ′)) ≤ Pr(N(x, y)− E[N(x, y)] < np(x, y)(ϵ− ϵ′)).

As ϵ′ > ϵ, we can apply Chebyshev’s inequality to the rightmost term to obtain

Pr(N(x, y) < np(x, y)(1− ϵ′)) ≤ Var(N(x, y))

n2p(x, y)2(ϵ′ − ϵ)2
≤ 1

np(x, y)2(ϵ′ − ϵ)2
,

which tends to 0 as n → ∞. Proceed similarly to obtain the same result for Pr(N(x, y) >
np(x, y)(1 + ϵ′)).

For ϵ′ < ϵ; it is not guaranteed that the above expressions tend to zero for all xn ∈
T (n, px, ϵ). In fact, had we taken a xn ∈ T (n, px, ϵ), but x

n /∈ T (n, px, ϵ
′); we would

have at least one x ∈ X such that J(x) > (1 + ϵ′)np(x) and E[N(x, y)] > (1 +
ϵ′)np(x, y), which makes it impossible for Pr(N(x, y) > (1+ ϵ′)np(x, y)) to go to zero.

(c)

Pr((xn,Y n) /∈ T (n, pXY , ϵ
′))

= Pr(∃x, y ∈ X × Y : N(x, y) /∈ [(1− ϵ′)np(x, y), (1 + ϵ′)np(x, y)])

≤
∑

x∈X ,y∈Y

[
Pr(N(x, y) < np(x, y)(1− ϵ′)) + Pr(N(x, y) > np(x, y)(1 + ϵ′))

]
≤ 1

n

∑
x∈X ,y∈Y

2

p(x, y)2(ϵ′ − ϵ)2
,

which tends to 0 as n → ∞.

(d) With (U,X) playing the role of X in (a,b,c), we see that the event we ask is exactly
the complement of the event in (c). Therefore, its probability goes to 1.
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