ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 35	Information Theory and Coding
Solutions to Final exam	Jan. 13, 2025

PROBLEM 1. (9 points)

(a) (2 pts) Suppose X and Y are random variables and suppose that X is uniformly distributed on a finite set of values. Let $p = \Pr(X = Y)$. Show that $I(X;Y) \ge pH(X) - 1$.

Hint: Upper bound H(X|Y) by Fano's inequality. (Note that in this exercise Y need not be discrete.)

Solution: By Fano's inequality, we have $H(X|Y) \leq h_2(p) + (1-p)\log(|\mathcal{X}|-1)$. Note that $h_2(p) \leq 1$ and $\log(|\mathcal{X}|-1) \leq \log |\mathcal{X}| = H(X)$ since X is uniform, and we are done.

Consider now a discrete memoryless channel for which the input $x \in [0, 1]$ and the output $Y \in [0, 1]$ are related via $Y = \min(x, Z)$ where Z is a random variable uniformly distributed on [0, 1].

(b) (2 pts) Fix a positive integer k and a positive number c with $0 < c \le 1$. Suppose the input X is uniformly distributed on $\left\{\frac{ci}{k} : i = 0, \ldots, k\right\}$. Show that $I(X;Y) \ge (1-c)\log(1+k) - 1$.

Solution: Note that X is uniformly distributed on k + 1 values, hence $H(X) = \log(k+1)$. Also note that for $p = \Pr(X = Y) = \sum_{i=0}^{k} \Pr(Z \ge \frac{ci}{k}) \ge \Pr(Z \ge c) = 1-c$. Plugging p = 1 - c and $H(X) = \log(k+1)$ in the inequality shown in (a), we are done.

(c) (2 pts) Find the capacity of this channel.

Solution: For any positive integer k and c < 1, we know from (b) that $I(X;Y) \ge (1-c)\log(1+k)-1$. Hence, the capacity is infinity. (Suppose it were finite, say equal to C, then there exists a sufficiently large k such that $(1-c)\log(1+k)-1 > C \ge I(X;Y)$, which is a contradiction.)

(d) (3 pts) Fix $0 \le a < b \le 1$. Suppose now the input x is constrained to be in the interval [a, b]. Find the capacity of the channel under this constraint. *Hint:* Pick c < b - a, and let X be uniformly distributed on $\{a + \frac{ci}{k} : i = 0, ..., k\}$.

Solution: As given in the hint, let c < b - a, and let X be uniformly distributed on $\{a + \frac{ci}{k} : i = 0, ..., k\}$. Again, $H(X) = \log(k+1)$ and $p \ge \Pr(Z \ge a + c) =$ 1 - a - c > 0. Thus, the capacity is infinity once again, for any choice of a, b such that a < b.

Remarks: It is surprising that the capacity turns out to be infinity in all cases, including when a and b are arbitrarily close to each other, as long as they are different (if a = b, the capacity is trivially zero since $I(X;Y) \leq \log |\mathcal{X}| = 0$). It is also surprising that the capacity does not depend on the position of a, b within [0, 1].

PROBLEM 2. (7 points)

Recall that the Hamming weight $w_H(x^n)$ of a binary vector x^n is the number of 1's that occur in x^n , i.e., $w_H(x^n) = \sum_{i=1}^n \mathbb{1}(x_i = 1)$. Suppose $X^n \in \{0,1\}^n$ is a random binary vector, with $\frac{1}{n}\mathbb{E}[w_H(X^n)] = p$.

(a) (1 pts) Let $p_i = \Pr(X_i = 1)$. How are p_1, \ldots, p_n and p related?

Solution: p is the arithmetic average of p_i 's, as

$$p = \frac{1}{n} \mathbb{E}[w_H(X^n)] = \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^n \mathbb{1}(x_i = 1)\right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[\mathbb{1}(x_i = 1)\right]$$
$$= \frac{1}{n} \sum_{i=1}^n p_i.$$

(b) (1 pts) How are $H(X_i)$ and p_i related?

Solution: Since X_i is a binary random variable taking the values 0 and 1 with probability 1 - p and p, by definition, $H(X_i) = h_2(p_i)$.

(c) (3 pts) Show that $\frac{1}{n}H(X^n) \leq h_2(p)$. Solution: This follows from the following chain of inequalities:

$$\frac{1}{n}H(X^n) \le \frac{1}{n}\sum_{i=1}^n H(X_i) = \frac{1}{n}\sum_{i=1}^n h_2(p_i)$$
$$\le h_2\left(\frac{1}{n}\sum_{i=1}^n p_i\right) = h_2(p),$$

which follow from the subadditivity of entropy and the concavity of h_2 .

(d) (2 pts) Let $B_n(r)$ be the Hamming ball of radius r around 0^n , i.e., $B_n(r) = \{x^n \in \{0,1\}^n : w_H(x^n) \le r\}$. For $r \le \frac{n}{2}$, show that $\frac{1}{n} \log |B_n(r)| \le h_2(\frac{r}{n})$. *Hint:* Let X^n be uniformly distributed on $B_n(r)$.

Solution: As given in the hint, let X^n be uniformly distributed on $B_n(r)$. Then, $H(X^n) = \log |B_n(r)|$. For any $x^n \in B_n(r)$, we have $w_H(x^n) \leq r$, hence $p = \frac{1}{n} \mathbb{E}[w_H(X^n)] \leq \frac{r}{n} \leq \frac{1}{2}$. Observing that $p \mapsto h_2(p)$ is increasing for $p \in [0, \frac{1}{2}]$, we are done by (c).

Remarks: This strengthens one of the homework exercises that the Hamming sphere $S_n(r) = \{x^n : w_H(x^n) = r\}$ has volume less than $2^{nh_2(r/n)}$, by saying that not only the surface of the sphere, but the entire volume of vectors of weight at most r is upper bounded by $2^{nh_2(r/n)}$.

PROBLEM 3. (7 points)

Suppose X is an *integer valued* random variable, Z is uniformly distributed on the interval [0, 1] and is independent of X, and Y = X + Z.

(a) (2 pts) How is H(X) and h(Y) related?

Solution: H(X) = h(Y), this can be seen by first observing that $f_Y(y) = \Pr(X = \lfloor y \rfloor)$, so $\int f_Y(y) \log f_Y(y) dy = \sum_k \Pr(X = k) \log \Pr(X = k)$.

- (b) (2 pts) Show that $\operatorname{Var}(Y) = \operatorname{Var}(X) + \frac{1}{12}$. Solution: Since X and Z are independent, $\operatorname{Var}(Y) = \operatorname{Var}(X) + \operatorname{Var}(Z) = \operatorname{Var}(X) + \frac{1}{12}$, as $\operatorname{Var}(Z) = \int_0^1 z^2 \, dz - \left(\int_0^1 z \, dz\right)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$.
- (c) (1 pts) Show that $H(X) \leq \frac{1}{2} \log \left(2\pi e \left(\operatorname{Var}(X) + \frac{1}{12} \right) \right)$.

Solution: For any continuous random variable Y, we have $h(Y) \leq (1/2) \log[2\pi e \operatorname{Var}(Y)]$. Hence, the desired inequality follows from (b).

(d) (2 pts) Suppose $S_n = \sum_{i=1}^n B_i$ where B_i are i.i.d. $\operatorname{Bern}(\frac{1}{2})$. Show that $H(S_n) \leq \frac{1}{2} \log \left(2\pi e(\frac{n}{4} + \frac{1}{12})\right) \leq \frac{1}{2} \log(n+1) + \frac{1}{2} \log\left(\frac{\pi e}{2}\right)$

Solution: Let $X = S_n$ and let Y and Z be as described in the parts above. Then $\operatorname{Var}(X) = \operatorname{Var}(S_n) = n\operatorname{Var}(B_i) = \frac{n}{4}$. Hence, by (c), we have

$$H(S_n) \leq \frac{1}{2} \log \left(2\pi e \left(\operatorname{Var}(S_n) + \frac{1}{12} \right) \right) = \frac{1}{2} \log \left(2\pi e \left(\frac{n}{4} + \frac{1}{12} \right) \right)$$
$$= \frac{1}{2} \log \left(\frac{\pi e}{2} \right) + \frac{1}{2} \log \left(n + \frac{1}{3} \right),$$

and we are done as $\log(n + \frac{1}{3}) \le \log(n + 1)$.

Remarks: The final result follows immediately from (c), but it captures the "correct" order of increase of $H(S_n)$, i.e., $\lim_{n\to\infty} \frac{H(S_n)}{\log n} = \frac{1}{2}$.

PROBLEM 4. (11 points)

We are given a binary input channel $W : \mathbb{F}_2 \to \mathcal{Y}$. Let $Q(W) = \sum_y \sqrt{W(y|0)W(y|1)}$.

(a) (1 pts) Find Q(BEC(p)).

Solution: By simply computing the expression, we get

$$Q(\text{BEC}(p)) = \sum_{y} \sqrt{\text{BEC}(y|0)\text{BEC}(y|1)}$$
$$= \sqrt{(1-p)\cdot 0} + \sqrt{p\cdot p} + \sqrt{0\cdot (1-p)} = p.$$

(b) (3 pts) Suppose the channel input X is equally likely to be 0 or 1, and upon observing the channel output Y = y, we estimate the value of X as $\hat{x}(y) = 0$ if W(y|0) > W(y|1); 1 else. Show that $\Pr(\hat{x}(Y) \neq X) \leq Q(W)$. *Hint:* First condition on X = 0. In this case $\mathbb{1}\{\hat{x}(y) \neq X\} \leq \sqrt{\frac{W(y|1)}{W(y|0)}}$. *Solution:* We can write the error probability as

$$\Pr(\hat{x}(Y) \neq X) = \Pr(X = 0) \Pr(\hat{x}(Y) \neq 0 \mid X = 0) + \Pr(X = 1) \Pr(\hat{x}(Y) \neq 1 \mid X = 1).$$

Using the hint, note that $\mathbb{1}{\hat{x}(y) \neq 0} \leq \sqrt{\frac{W(y|1)}{W(y|0)}}$ and hence,

$$\begin{aligned} \Pr(\hat{x}(Y) \neq 0 \mid X = 0) &\leq \sum_{y} W(y|0) \mathbb{1}\{\hat{x}(y) \neq 0\} \\ &\leq \sum_{y} W(y|0) \sqrt{\frac{W(y|1)}{W(y|0)}} = \sum_{y} \sqrt{W(y|0)W(y|1)}. \end{aligned}$$

Similarly, $\Pr(\hat{x}(Y) \neq 0 \mid X = 0) \leq \sum_{y} \sqrt{W(y|0)W(y|1)}$. Hence, the average $\Pr(\hat{x}(Y) \neq X)$ is also smaller than $\sum_{y} \sqrt{W(y|0)W(y|1)} = Q(W)$.

Recall the polar construction which, from two instances of the channel W synthesized the channels $W^- : \mathbb{F}_2 \to \mathcal{Y}^2$ and $W^+ : \mathbb{F}_2 \to \mathcal{Y}^2 \times \mathbb{F}_2$ with

$$W^{-}(y_{1}y_{2}|u_{1}) = \frac{W(y_{1}|u_{1})W(y_{2}|0) + W(y_{1}|u_{1} \oplus 1)W(y_{2}|1)}{2}$$

and

$$W^+(y_1y_2u_1|u_2) = \frac{1}{2}W(y_1|u_1 \oplus u_2)W(y_2|u_2).$$

(c) (2 pts) Show that $Q(W^+) = Q(W)^2$. *Hint:* $Q(W^+) = \sum_{y_1, y_2, u_1} \sqrt{W^+(y_1y_2u_1|0)W^+(y_1y_2u_1|1)}$ *Solution:* By simplifying the expression, we have

$$Q(W^{+}) = \sum_{y_1, y_2, u_1} \sqrt{W^{+}(y_1 y_2 u_1 | 0) W^{+}(y_1 y_2 u_1 | 1)}$$

$$= \sum_{y_1, y_2, u_1} \sqrt{\frac{1}{2} W(y_1 | u_1 \oplus 0) W(y_2 | 0) \frac{1}{2} W(y_1 | u_1 \oplus 1) W(y_2 | 1)}$$

$$= \frac{1}{2} \sum_{y_1, y_2, u_1} \sqrt{W(y_1 | u_1 \oplus 0) W(y_1 | u_1 \oplus 1) W(y_2 | 0) W(y_2 | 1)}$$

$$= \frac{1}{2} \sum_{y_1, u_1} \sqrt{W(y_1 | u_1 \oplus 0) W(y_1 | u_1 \oplus 1)} \sum_{y_2} \sqrt{W(y_2 | 0) W(y_2 | 1)}$$

$$= \frac{1}{2} \cdot 2Q(W) \cdot Q(W) = Q(W)^2.$$

(d) (2 pts) Use the inequality

$$\sqrt{(ab+cd)(ac+bd)} \le \left(\sqrt{ab}+\sqrt{cd}\right)\left(\sqrt{ac}+\sqrt{bd}\right) - 2\sqrt{abcd}$$

to show that $Q(W^-) \leq 2Q(W) - Q(W)^2$.

Solution: Start by writing $2Q(W^-)$ as a double sum over y_1, y_2 , and note that the terms are exactly of the form $(\sqrt{(ab+cd)(ac+bd)} \text{ with } a = W(y_1|0), b = W(y_2|0), c = W(y_1|1), d = W(y_2|1)$. The given inequality then gives us exactly what we want. From the " $-2\sqrt{abcd}$ " term we get $-2Q(W)^2$; each of the four terms in the expansion of $(\sqrt{ab} + \sqrt{cd})(\sqrt{ac} + \sqrt{bd})$ gives Q(W).

(e) (3 pts) Given a binary input channel W, Let $\tilde{W} = \text{BEC}(p)$, where p = Q(W). Show that for any sign sequence $s^t \in \{+, -\}^t$, $Q(W^{s^t}) \leq Q(\tilde{W}^{s^t})$. Solution: Let $Q_i = Q(W^{s^i})$ and similarly $\tilde{Q}_i = Q(\tilde{W}^{s^i})$. $Q_t \leq \tilde{Q}_t$ follows by induction on t. The base case (t = 0) holds trivially. Since the Successive terms of the \tilde{Q}_i sequence are found (with equality, since this is a BEC) from the previous term by $x \mapsto x^2$ or $x \mapsto 2x - x^2$ operations depending on the sign s_i . Note that both these operations are monotonically increasing. Meanwhile, the Q_i sequence goes through corresponding operations but with inequality (because of (d)), and we are done. *Remarks:* The inequality in part (b) is the Bhattacharyya bound on the error probability. An immediate consequence of parts (b) and (e) is the following: With W and \tilde{W} as above, suppose enc is a polar code designed for the channel \tilde{W} . Let \tilde{p}_e denote the error probability of the code enc (with the corresponding polar decoder) when used on \tilde{W} , and let p_e denote the error probability of of the same code when used on channel W (with the corresponding polar decoder). Then $p_e \leq \tilde{p}_e$.