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Problem 1. (9 points)

(a) (2 pts) Suppose X and Y are random variables and suppose that X is uniformly
distributed on a finite set of values. Let p = Pr(X = Y ). Show that I(X;Y ) ≥
pH(X)− 1.
Hint: Upper boundH(X|Y ) by Fano’s inequality. (Note that in this exercise Y need not be discrete.)

Solution: By Fano’s inequality, we have H(X|Y ) ≤ h2(p)+ (1− p) log(|X |− 1). Note
that h2(p) ≤ 1 and log(|X | − 1) ≤ log |X | = H(X) since X is uniform, and we are
done.

Consider now a discrete memoryless channel for which the input x ∈ [0, 1] and the output
Y ∈ [0, 1] are related via Y = min(x, Z) where Z is a random variable uniformly distributed
on [0, 1].

(b) (2 pts) Fix a positive integer k and a positive number c with 0 < c ≤ 1. Suppose
the input X is uniformly distributed on

{
ci
k
: i = 0, . . . , k

}
. Show that I(X;Y ) ≥

(1− c) log(1 + k)− 1.

Solution: Note that X is uniformly distributed on k + 1 values, hence H(X) =
log(k+1). Also note that for p = Pr(X = Y ) =

∑k
i=0 Pr(Z ≥ ci

k
) ≥ Pr(Z ≥ c) = 1−c.

Plugging p = 1 − c and H(X) = log(k + 1) in the inequality shown in (a), we are
done.

(c) (2 pts) Find the capacity of this channel.

Solution: For any positive integer k and c < 1, we know from (b) that I(X;Y ) ≥
(1−c) log(1+k)−1. Hence, the capacity is infinity. (Suppose it were finite, say equal to
C, then there exists a sufficiently large k such that (1−c) log(1+k)−1 > C ≥ I(X;Y ),
which is a contradiction.)

(d) (3 pts) Fix 0 ≤ a < b ≤ 1. Suppose now the input x is constrained to be in the
interval [a, b]. Find the capacity of the channel under this constraint.
Hint: Pick c < b− a, and let X be uniformly distributed on

{
a+ ci

k : i = 0, . . . , k
}
.

Solution: As given in the hint, let c < b − a, and let X be uniformly distributed
on
{
a+ ci

k
: i = 0, . . . , k

}
. Again, H(X) = log(k + 1) and p ≥ Pr(Z ≥ a + c) =

1 − a − c > 0. Thus, the capacity is infinity once again, for any choice of a, b such
that a < b.

Remarks: It is surprising that the capacity turns out to be infinity in all cases, including
when a and b are arbitrarily close to each other, as long as they are different (if a = b,
the capacity is trivially zero since I(X;Y ) ≤ log |X | = 0). It is also surprising that the
capacity does not depend on the position of a, b within [0, 1].



Problem 2. (7 points)

Recall that the Hamming weight wH(x
n) of a binary vector xn is the number of 1’s that

occur in xn, i.e., wH(x
n) =

∑n
i=1 1(xi = 1). Suppose Xn ∈ {0, 1}n is a random binary

vector, with 1
n
E[wH(X

n)] = p.

(a) (1 pts) Let pi = Pr(Xi = 1). How are p1, . . . , pn and p related?

Solution: p is the arithmetic average of pi’s, as

p =
1

n
E[wH(X

n)] =
1

n
E

[
n∑

i=1

1(xi = 1)

]
=

1

n

n∑
i=1

E [1(xi = 1)]

=
1

n

n∑
i=1

pi.

(b) (1 pts) How are H(Xi) and pi related?

Solution: Since Xi is a binary random variable taking the values 0 and 1 with prob-
ability 1− p and p, by definition, H(Xi) = h2(pi).

(c) (3 pts) Show that 1
n
H(Xn) ≤ h2(p).

Solution: This follows from the following chain of inequalities:

1

n
H(Xn) ≤ 1

n

n∑
i=1

H(Xi) =
1

n

n∑
i=1

h2(pi)

≤ h2

(
1

n

n∑
i=1

pi

)
= h2(p),

which follow from the subadditivity of entropy and the concavity of h2.

(d) (2 pts) Let Bn(r) be the Hamming ball of radius r around 0n, i.e., Bn(r) = {xn ∈
{0, 1}n : wH(x

n) ≤ r}. For r ≤ n
2
, show that 1

n
log |Bn(r)| ≤ h2(

r
n
).

Hint: Let Xn be uniformly distributed on Bn(r).

Solution: As given in the hint, let Xn be uniformly distributed on Bn(r). Then,
H(Xn) = log |Bn(r)|. For any xn ∈ Bn(r), we have wH(x

n) ≤ r, hence p =
1
n
E[wH(X

n)] ≤ r
n
≤ 1

2
. Observing that p 7→ h2(p) is increasing for p ∈ [0, 1

2
], we

are done by (c).

Remarks: This strengthens one of the homework exercises that the Hamming sphere
Sn(r) = {xn : wH(x

n) = r} has volume less than 2nh2(r/n), by saying that not only the
surface of the sphere, but the entire volume of vectors of weight at most r is upper bounded
by 2nh2(r/n).

Problem 3. (7 points)

Suppose X is an integer valued random variable, Z is uniformly distributed on the interval
[0, 1] and is independent of X, and Y = X + Z.

(a) (2 pts) How is H(X) and h(Y ) related?

Solution: H(X) = h(Y ), this can be seen by first observing that fY (y) = Pr(X =
⌊y⌋), so

∫
fY (y) log fY (y)dy =

∑
k Pr(X = k) log Pr(X = k).
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(b) (2 pts) Show that Var(Y ) = Var(X) + 1
12
.

Solution: Since X and Z are independent, Var(Y ) = Var(X)+Var(Z) = Var(X)+ 1
12
,

as Var(Z) =
∫ 1

0
z2 dz −

(∫ 1

0
z dz

)2
= 1

3
− 1

4
= 1

12
.

(c) (1 pts) Show that H(X) ≤ 1
2
log
(
2πe

(
Var(X) + 1

12

) )
.

Solution: For any continuous random variable Y , we have h(Y ) ≤ (1/2) log[2πeVar(Y )].
Hence, the desired inequality follows from (b).

(d) (2 pts) Suppose Sn =
∑n

i=1Bi where Bi are i.i.d. Bern(1
2
). Show that H(Sn) ≤

1
2
log
(
2πe(n

4
+ 1

12
)
)
≤ 1

2
log(n+ 1) + 1

2
log
(
πe
2

)
Solution: Let X = Sn and let Y and Z be as described in the parts above. Then
Var(X) = Var(Sn) = nVar(Bi) =

n
4
. Hence, by (c), we have

H(Sn) ≤
1

2
log
(
2πe

(
Var(Sn) +

1

12

))
=

1

2
log
(
2πe

(
n

4
+

1

12

))
=

1

2
log
(πe
2

)
+

1

2
log

(
n+

1

3

)
,

and we are done as log(n+ 1
3
) ≤ log(n+ 1).

Remarks: The final result follows immediately from (c), but it captures the “correct” order

of increase of H(Sn), i.e., limn→∞
H(Sn)
logn

= 1
2
.

Problem 4. (11 points)

We are given a binary input channel W : F2 → Y . Let Q(W ) =
∑

y

√
W (y|0)W (y|1).

(a) (1 pts) Find Q(BEC(p)).

Solution: By simply computing the expression, we get

Q(BEC(p)) =
∑
y

√
BEC(y|0)BEC(y|1)

=
√
(1− p) · 0 +√

p · p+
√

0 · (1− p) = p.

(b) (3 pts) Suppose the channel input X is equally likely to be 0 or 1, and upon observing
the channel output Y = y, we estimate the value of X as x̂(y) = 0 if W (y|0) >
W (y|1); 1 else. Show that Pr(x̂(Y ) ̸= X) ≤ Q(W ).

Hint: First condition on X = 0. In this case 1{x̂(y) ̸= X} ≤
√

W (y|1)
W (y|0) .

Solution: We can write the error probability as

Pr(x̂(Y ) ̸= X) = Pr(X = 0)Pr(x̂(Y ) ̸= 0 | X = 0) + Pr(X = 1)Pr(x̂(Y ) ̸= 1 | X = 1).

Using the hint, note that 1{x̂(y) ̸= 0} ≤
√

W (y|1)
W (y|0) and hence,

Pr(x̂(Y ) ̸= 0 | X = 0) ≤
∑
y

W (y|0)1{x̂(y) ̸= 0}

≤
∑
y

W (y|0)

√
W (y|1)
W (y|0)

=
∑
y

√
W (y|0)W (y|1).
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Similarly, Pr(x̂(Y ) ̸= 0 | X = 0) ≤
∑

y

√
W (y|0)W (y|1). Hence, the average

Pr(x̂(Y ) ̸= X) is also smaller than
∑

y

√
W (y|0)W (y|1) = Q(W ).

Recall the polar construction which, from two instances of the channel W synthesized the
channels W− : F2 → Y2 and W+ : F2 → Y2 × F2 with

W−(y1y2|u1) =
W (y1|u1)W (y2|0) +W (y1|u1 ⊕ 1)W (y2|1)

2

and

W+(y1y2u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2).

(c) (2 pts) Show that Q(W+) = Q(W )2.
Hint: Q(W+) =

∑
y1,y2,u1

√
W+(y1y2u1|0)W+(y1y2u1|1)

Solution: By simplifying the expression, we have

Q(W+) =
∑

y1,y2,u1

√
W+(y1y2u1|0)W+(y1y2u1|1)

=
∑

y1,y2,u1

√
1

2
W (y1|u1 ⊕ 0)W (y2|0)

1

2
W (y1|u1 ⊕ 1)W (y2|1)

=
1

2

∑
y1,y2,u1

√
W (y1|u1 ⊕ 0)W (y1|u1 ⊕ 1)W (y2|0)W (y2|1)

=
1

2

∑
y1,u1

√
W (y1|u1 ⊕ 0)W (y1|u1 ⊕ 1)

∑
y2

√
W (y2|0)W (y2|1)

=
1

2
· 2Q(W ) ·Q(W ) = Q(W )2.

(d) (2 pts) Use the inequality√
(ab+ cd)(ac+ bd) ≤

(√
ab+

√
cd
)(√

ac+
√
bd
)
− 2

√
abcd

to show that Q(W−) ≤ 2Q(W )−Q(W )2.

Solution: Start by writing 2Q(W−) as a double sum over y1, y2, and note that the
terms are exactly of the form (

√
(ab+ cd)(ac+ bd) with a = W (y1|0), b = W (y2|0),

c = W (y1|1), d = W (y2|1). The given inequality then gives us exactly what we want.
From the “−2

√
abcd” term we get −2Q(W )2; each of the four terms in the expansion

of (
√
ab+

√
cd)(

√
ac+

√
bd) gives Q(W ).

(e) (3 pts) Given a binary input channel W , Let W̃ = BEC(p), where p = Q(W ). Show
that for any sign sequence st ∈ {+,−}t, Q(W st) ≤ Q(W̃ st).

Solution: Let Qi = Q(W si) and similarly Q̃i = Q(W̃ si). Qt ≤ Q̃t follows by induction
on t. The base case (t = 0) holds trivially. Since the Successive terms of the Q̃i

sequence are found (with equality, since this is a BEC) from the previous term by
x 7→ x2 or x 7→ 2x − x2 operations depending on the sign si. Note that both these
operations are monotonically increasing. Meanwhile, the Qi sequence goes through
corresponding operations but with inequality (because of (d)), and we are done.
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Remarks: The inequality in part (b) is the Bhattacharyya bound on the error probability.
An immediate consequence of parts (b) and (e) is the following: With W and W̃ as above,
suppose enc is a polar code designed for the channel W̃ . Let p̃e denote the error probability
of the code enc (with the corresponding polar decoder) when used on W̃ , and let pe denote
the error probability of of the same code when used on channel W (with the corresponding
polar decoder). Then pe ≤ p̃e.

5


