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Notation:

exp2(a) := 2a.

for a positive integer m, [m] := {1, . . . ,m}.

Problem 1. Suppose scr : A× B → R. We will call scr to be a ‘score function’. Suppose
a(1), . . . , a(m) are elements of A. For this collection, the maximum score decoder is the
function decscr : B → {0, 1, . . . ,m} given by

decscr(b) = argmax
i∈[m]

scr(a(i), b),

if there is a unique maximizer; if not we set decscr(b) = 0 (i.e., in the case of a tie the
decoder says “I can’t decide”).

(a) Suppose two score functions scr and scr′ are such that scr(a, b) − scr′(a, b) is only a
function of b. What can you say about decscr and decscr′?

Solution: Assume scr(a, b) = scr′(a, b) + f(b) for some function f . Since

max
i∈[m]

scr′(a(i), b) = max
i∈[m]

{scr(a(i), b) + f(b)} = f(b) + max
i∈[m]

scr(a(i), b),

the set of elements achieving the maximum is the same whether we use scr or scr′,
and hence decscr′(b) = decscr(b).

(b) Suppose two score functions scr and scr′ are such that scr(a, b) = λ scr′(a, b) for a
given constant λ > 0. What can you say about decscr and decscr′?

Solution: Similar to part (a), since

max
i∈[m]

scr′(a(i), b) = max
i∈[m]

λ scr(a(i), b) = λmax
i∈[m]

scr(a(i), b),

the set of elements achieving the maximum is the same whether we use scr or scr′,
and hence decscr′(b) = decscr(b).

For t ∈ R, consider the threshold decoder dect,scr that operates as follows: given b, form
the list Lt = {i : scr(a(i), b) ≥ t}. If Lt consists of a single element i0, we set dect,scr(b) = i0.
Otherwise dect,scr(b) = 0.

(c) Show that if dect,scr(b) ̸= 0, then decscr(b) = dect,scr(b).
Moral: If the threshold decoder makes the correct decision, so does the maximum
score decoder.

Solution: Since dect,scr(b) ̸= 0, Lt consists of one element i0. By definition of Lt, we
thus have scr(a(i0), b) ≥ t, while scr(a(j), b) < t for all j ∈ [m] \ {i0}. In particular
this means argmaxi∈[m] scr(a(i), b) = {i0}, so that the maximizer is unique and hence
decscr(b) = dect,scr(b).



Problem 2. Let pXY be a probability distribution on X ×Y . Suppose the triple (X̃,X, Y )
has a joint distribution given by pX̃XY (x̃, x, y) = pX(x̃)pXY (x, y), i.e., (X, Y ) is drawn
according to pXY and X̃ is independent of the pair (X, Y ) but with the same marginal
distribution as X. Suppose

(
(X̃i, Xi, Yi) : i = 1, 2, . . .

)
is a collection of i.i.d. random

triples with distribution pX̃XY . Given s : X × Y → R, let scr(xn, yn) =
∑n

i=1 s(xi, yi).

(a) Let t0 = E [s(X, Y )] =
∑

x,y pXY (x, y)s(x, y). Show that for any t < t0,

lim
n→∞

Pr(scr(Xn, Y n) < nt) = 0.

Solution: By the Weak Law of Large Numbers, we have that for all ε > 0

lim
n→∞

Pr

(∣∣∣∣∣ 1n
n∑

i=1

s(Xn, Y n)− t0

∣∣∣∣∣ > ε

)
= 0.

In particular this means that for any t < t0, which we can write as t = t0−ε for some
ε > 0,

lim
n→∞

Pr(s(Xn, Y n) < nt) = lim
n→∞

Pr

(
1

n
s(Xn, Y n) < t0 − ε

)
= lim

n→∞
Pr

(
ε < t0 −

1

n
s(Xn, Y n)

)
≤ lim

n→∞
Pr

(∣∣∣∣∣ 1n
n∑

i=1

s(Xn, Y n)− t0

∣∣∣∣∣ > ε

)
= 0,

where the inequality follows from the fact that for any random variable X and con-
stant c ∈ R, Pr(X > c) ≤ Pr(|X| > c).

(b) Show that
Pr(scr(X̃n, Y n) ≥ nt) ≤ exp2[−n(t− α)],

where α = log2 E
[
exp2

(
s(X̃, Y )

)]
= log2

∑
x,y pX(x)pY (y) exp2(s(x, y)).

Hint: 1{Z ≥ z} ≤ exp2(Z) exp2(−z).

Solution: We can use Chebyshev’s inequality to get

Pr(scr(X̃n, Y n) ≥ nt) = Pr
(
exp2(scr(X̃

n, Y n)) ≥ exp2(nt)
)

≤ E[exp2(scr(X̃
n, Y n)]

2nt

= exp2(log2 E[exp2(scr(X̃
n, Y n)]− nt)

= exp2

(
log2 E

[
n∏

i=1

exp2(s(X̃i, Yi))

]
− nt

)

= exp2

(
log2

n∏
i=1

E
[
exp2(s(X̃i, Yi))

]
− nt

)
= exp2

(
log2 E

[
exp2(s(X̃, Y ))

]n
− nt

)
= exp2(n log2 E[exp2(s(X̃, Y )]− nt)

= exp2(−n(t− α)).
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Given a channel pY |X , a probability distribution pX , a blocklength n, and a rate R, set m =
⌈2nR⌉, and construct a random encoder enc : [m] → X n by setting enc(i) = (Ei1, . . . , Ein),
where (Eij : i ∈ [m] j ∈ [n]) is a collection of i.i.d. random variables with distribution pX .
Let the decoder be the threshold decoder decnt,scr using the score function scr as defined
above and threshold nt.

LetW be the transmitted message (uniformly chosen in [m]), and let Ŵ be the threshold
decoder’s decision.

(c) With X̃n, Xn and Y n as in the first paragraph, show that

Pr(Ŵ ̸= W ) ≤ Pr(scr(Xn, Y n) < nt) + (m− 1) Pr(scr(X̃n, Y n) ≥ nt)

≤ Pr(scr(Xn, Y n) < nt) + 2nR Pr(scr(X̃n, Y n) ≥ nt).

Solution: In the following, for a message i ∈ [m], we denote its random encod-
ing by (Ei1, . . . , Ein) and the corresponding output through the channel pY |X as
(Fi1, . . . , Fin).

There are two kinds of errors to consider:

1. The threshold decoder returns a set Lnt which is empty (type 1 error).

If message i ∈ [m] is sent, the error occurs in particular because
scr((Ei1, . . . , Ein), (Fi1, . . . , Fin)) < nt. Since (Ei1, . . . , Ein) are i.i.d. according
to pX , and (Fi1, . . . , Fin) is the corresponding output according to the channel
pX|Y , we can write

Pr(Type 1 error|W = i) ≤ Pr(scr((Ei1, . . . , Ein), (Fi1, . . . , Fin)) < nt)

= Pr(scr(Xn, Y n) < nt)

2. The threshold decoder returns a set Lnt with more than one element (type 2
error).

If message i ∈ [m] is sent, this means there is at least one j ̸= i such that
scr((Ej1, . . . , Ejn), (Fi1, . . . , Fin)) ≥ nt. That is, although enc(j) was not sent
through the channel, it scores high when compared to the actual output. Since
all the (Ej1, . . . , Ejn) are i.i.d. according to pX , and independent of the actual
output of the channel (Fi1, . . . , Fin), we can write

Pr(Type 2 error|W = i) = Pr(∃j ̸= i s.t. scr((Ej1, . . . , Ejn), (Fi1, . . . , Fin)) ≥ nt)

≤
∑

j∈[m]:j ̸=i

Pr(scr((Ej1, . . . , Ejn), (Fi1, . . . , Fin)) ≥ nt)

≤
∑

j∈[m]:j ̸=i

Pr(scr(X̃n, Y n) ≥ nt)

= (m− 1) Pr(scr(X̃n, Y n) ≥ nt)

= (⌈2nR⌉ − 1) Pr(scr(X̃n, Y n) ≥ nt)

≤ 2nR Pr(scr(X̃n, Y n) ≥ nt)
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We can now use the above computations to determine the probability of error:

Pr(Ŵ ̸= W ) =
∑
i∈[m]

Pr(Ŵ ̸= W |W = i) Pr(W = i)

=
∑
i∈[m]

Pr (Type 1 error ∪ Type 2 error|W = i) Pr(W = i)

=
∑
i∈[m]

[Pr (Type 1 error|W = i) + Pr (Type 2 error|W = i)] Pr(W = i)

≤
∑
i∈[m]

[
Pr(scr(Xn, Y n) < nt) + 2nR Pr(scr(X̃n, Y n) ≥ nt)

]
Pr(W = i)

= Pr(scr(Xn, Y n) < nt) + 2nR Pr(scr(X̃n, Y n) ≥ nt)

(d) With t0 and α as in (a) and (b), show that for R < t0−α, and ϵ > 0, there is a choice
of t such that for n large enough, Pr(Ŵ ̸= W ) < ϵ.
Hint: Since R < t0 − α, there is a t strictly in between R+ α and t0. Now use (a), (b), and (c).

Solution: Since R < t0 − α, we can find a t such that R < t− α < t0 − α. From part
2(c), we know that using the threshold decoder with threshold nt, the probability of
error can be bounded by

Pr(scr(Xn, Y n) < nt) + 2nR Pr(scr(X̃n, Y n) ≥ nt).

The first term goes to 0 as n gets large due to part 2(a) since t < t0. The second
term is bounded by 2−n(t−α−R) by part 2(b), and can be made arbitrarily small since
R < t − α. Hence, for any choice of ϵ, we can always find n large enough such that
the probability of error is at most ϵ.

(e) Again, with t0 and α as in (a) and (b), show that for R < t0 − α and ϵ > 0, for large
enough n, there is an encoder enc with m = ⌈2nR⌉ codewords, and a maximum score
decoder decscr using the score function scr with average error probability at most ϵ.

Solution: From part 2(d), we know that there exists a threshold decoder such that
the probability of error can be made arbitrarily small when using a random encoder
(note that the error probability is also with respect to the randomness of the encoder!).
But this means that there must exists an encoder achieving this probability of error.
Moreover, we have seen from Problem 1 c) that the maximum score decoder can only
do better than the threshold decoder, so that overall we can guarantee the existence
of an encoder and a maximum score decoder with the desired properties.

(f) Evaluate t0 and α for the choice s(x, y) := log2
pXY (x,y)

pX(x)pY (y)
. Use (e) together with 1(a)

to conclude that for all rates R < I(X;Y ), there is an encoder of rate at least R with
the decoder using the maximum likelihood rule dec(yn) = argmaxi∈[m] pY n|Xn

(
yn |

enc(i)
)
, which achieves an average error probability that can be made arbitrarily

small.

Solution: We find that t0 = E[s(X, Y )] = E
[
log2

pXY (X,Y )
pX(X)pY (Y )

]
= I(X;Y ) and α =

log2 E
[
exp2(s(X̃, Y ))

]
= log2 E

[
pXY (X̃,Y )

pX(X̃)pY (Y )

]
= log2

∑
x,y pXY (x, y) = log2(1) = 0.

Hence, we have from part (e) that there exists an encoder with rate R and maxi-
mum decoder using the score scr(xn, yn) =

∑n
i=1 s(xi, yi). In particular, this decoder
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computes

decscr(y
n) = argmax

i∈[m]

n∑
j=1

s(enc(i)j, yj)

= argmax
i∈[m]

n∑
j=1

log2
pXY (enc(i)j, yj)

pX(enc(i)j)pY (yj)

= argmax
i∈[m]

log2

n∏
j=1

pXY (enc(i)j, yj)

pX(enc(i)j)pY (yj)

(from 1(a)) = argmax
i∈[m]

log2

n∏
j=1

pY |X(yj| enc(i)j)

= argmax
i∈[m]

log2 pY n|Xn(yn| enc(i))

= argmax
i∈[m]

pY n|Xn(yn| enc(i)),

which is precisely the maximum likelihood rule.

(g) Suppose now the decoder uses the maximum likelihood rule adapted to the channel
q instead of the true channel pY |X . Show that all rates up to

max
rY ,λ

[∑
x,y

pX(x)pY |X(y|x) log2
q(y|x)λ

rY (y)
− log2

∑
x,y

pX(x)pY (y)
q(y|x)λ

rY (y)

]

can be achieved with this (mismatched Maximum Likelihood) decoder. (The maxi-
mization is over all probability distributions rY and λ > 0.)
Hint: Use 1(b) and 1(c).

Solution: Note that using the maximum likelihood rule adapted to channel q is
equivalent to using the score with s(x, y) = log2

pX(x)q(y|x)
pX(x)qY (y)

with qY being the output

distribution. However, as established in Problem 1, replacing qY (y) with any function
f(y) (non-negative since it is inside a log2) gives an identical decoder. Moreover, mul-
tiplying the score by a constant does not change the decoder. Hence, we can consider

s(x, y) = λ log2
q(y|x)
f(y)

= log2
q(y|x)λ
f(y)λ

. For fixed λ and f , writing f(y)λ = rY (y), the

maximum rate achievable is given by t0 − α from part (e), which in this case is∑
x,y

pXY (x, y) log2
q(y|x)λ

rY (y)
− log2

∑
x,y

px(x)pY (y)
q(y|x)λ

rY (y)
.

Optimizing over λ and rY , the maximum rate achievable is thus

max
λ,rY

{∑
x,y

pXY (x, y) log2
q(y|x)λ

rY (y)
− log2

∑
x,y

px(x)pY (y)
q(y|x)λ

rY (y)

}
.

(h) Suppose our channel pY |X is the a binary input binary output channel p(1|0) = δ0
and p(0|1) = δ1, with δi ≤ 1/2. Suppose the decoder is using the ML rule adapted
to the BSC(ϵ) with ϵ < 1/2. Show that all rates up to 1− h2

(
δ0+δ1

2

)
can be achieved

by a suitable choice of pX at the encoder.
Hint: Choose pX , rY to be uniform distributions in (g) and find the maximizing λ.
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Solution: We choose pX and rY to be uniform distributions. Denoting the maximum
value computed in part 2(g) by R⋆, our choice yields

R⋆ ≥ max
λ>0

{
1

2

∑
x,y

pY |X(y|x) log2(2q(y|x)λ)− log2
∑
x,y

pY (y)q(y|x)λ
}

= max
λ>0

{
1 +

1

2

∑
x,y

pY |X(y|x) log2(q(y|x)λ)− log2
∑
y

pY (y)
∑
x

q(y|x)λ
}
.

Moreover, plugging

pY (y) =

{
1
2
(1− δ0 + δ1), if y = 0

1
2
(1− δ1 + δ0)), if y = 1,

(1)

in the above and defining δ := (δ0 + δ1)/2, we find

R⋆ ≥ max
λ>0

{
1 +

1

2

∑
x,y

pY |X(y|x) log2(q(y|x)λ)− log2
∑
y

pY (y)
∑
x

q(y|x)λ
}

= max
λ>0

{
1 +

1

2

[
(1− δ0) log2((1− ϵ)λ) + δ0 log2(ϵ

λ) + δ1 log2(ϵ
λ) + (1− δ1) log2((1− ϵ)λ)

]
− log2

[
1

2

(
ϵλ + (1− ϵ)λ

)
(2− δ0 − δ1 + δ0 + δ1))

]}
= max

λ>0

{
1 + (1− δ) log2((1− ϵ)λ) + δ log2(ϵ

λ)− log2
(
ϵλ + (1− ϵ)λ

)}
= max

λ>0

{
1 + (1− δ) log2

(1− ϵ)λ

ϵλ + (1− ϵ)λ
+ δ log2

ϵλ

ϵλ + (1− ϵ)λ

}
. (2)

To find the value of λ which achieves the maximum, we leave it as an exercise to show
that for a given parameter δ ∈ [0, 1], the function f(x) = (1−δ) log2(1−x)+δ log2(x)
is maximized at x = δ. From this observation, we conclude that the optimal λ in
Eq. (2) is such that

δ =
ϵλ

ϵλ + (1− ϵ)λ
⇐⇒ δ(1− ϵ)λ = (1− δ)ϵλ

⇐⇒
(
1− ϵ

ϵ

)λ

=
1− δ

δ

⇐⇒ λ =
log2

1−δ
δ

log2
1−ϵ
ϵ

.

As mentioned above, this choice of λ gives

R⋆ ≥ 1 + (1− δ) log2(1− δ) + δ log2 δ

= 1− h2(δ).

Since all rates up to R⋆ can be achieved and 1−h2(δ) ≤ R⋆, we see that in particular
rates below 1− h2(δ) can be achieved.
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