ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 32	Information Theory and Coding
Homework 13	Dec. 16, 2024

PROBLEM 1. Suppose we are told that for any n and M, for any binary code with blocklength n, with M codewords, the minimum distance d_{min} satisfies $d_{min} \leq d_0(M, n)$ where d_0 is a specified upper bound on minimum distance.

(a) Show that any upper bound d_0 can be improved to he following upper bound: for any n, M, for any binary code with blocklength n with M codewords

$$d_{min} \le d_1(M, n)$$

where $d_1(M, n) = \min_{k: 0 \le k \le n} d_0(\lceil M/2^k \rceil, n-k).$

(b) Consider the trivial bound

$$d_0(M,n) = \begin{cases} n, & M \ge 2\\ \infty, & M \le 1 \end{cases}$$

What is the bound d_1 constructed via (a) for this d_0 ?

(c) Suppose we are given a binary code with M words of blocklength n. Fix $1 \le i \le n$ and let a_1, \ldots, a_M be the *i*th bits if the M codewords. Suppose M_1 of the a_m 's are '1' and M_0 of them are '0'. Show that

$$\sum_{m=1}^{M} \sum_{\substack{m'=1\\m'\neq m}}^{M} d_H(a_m, a'_m) = 2M_0 M_1 \le M^2/2.$$

(d) Show that for any binary code with $M \ge 2$ codewords x_1, \ldots, x_M of blocklength n

$$M(M-1)d_{min} \le \sum_{m=1}^{M} \sum_{\substack{m'=1\\m' \ne m}}^{M} d_H(x_m, x_{m'}) \le nM^2/2;$$

consequently, $d_{\min} \leq \lfloor \frac{1}{2}n\frac{M}{M-1} \rfloor$.

PROBLEM 2. Let $W : \{0, 1\} \longrightarrow \mathcal{Y}$ be a channel where the input is binary and where the output alphabet is \mathcal{Y} . The Bhattacharyya parameter of the channel W is defined as

$$Z(W) = \sum_{y \in \mathcal{Y}} \sqrt{W(y|0)W(y|1)}.$$

Let X_1, X_2 be two independent random variables uniformly distributed in $\{0, 1\}$ and let Y_1 and Y_2 be the output of the channel W when the input is X_1 and X_2 respectively, i.e., $\mathbb{P}_{Y_1,Y_2|X_1,X_2}(y_1, y_2|x_1, x_2) = W(y_1|x_1)W(y_2|x_2)$. Define the channels W^- : $\{0, 1\} \longrightarrow \mathcal{Y}^2$ and W^+ : $\{0, 1\} \longrightarrow \mathcal{Y}^2 \times \{0, 1\}$ as follows:

- $W^-(y_1, y_2|u_1) = \mathbb{P}[Y_1 = y_1, Y_2 = y_2|X_1 \oplus X_2 = u_1]$ for every $u_1 \in \{0, 1\}$ and every $y_1, y_2 \in \mathcal{Y}$, where \oplus is the XOR operation.
- $W^+(y_1, y_2, u_1|u_2) = \mathbb{P}[Y_1 = y_1, Y_2 = y_2, X_1 \oplus X_2 = u_1|X_2 = u_2]$ for every $u_1, u_2 \in \{0, 1\}$ and every $y_1, y_2 \in \mathcal{Y}$.
- (a) Show that $W^{-}(y_1, y_2|u_1) = \frac{1}{2} \sum_{u_2 \in \{0,1\}} W(y_1|u_1 \oplus u_2) W(y_2|u_2).$
- (b) Show that $W^+(y_1, y_2, u_1|u_2) = \frac{1}{2}W(y_1|u_1 \oplus u_2)W(y_2|u_2).$
- (c) Show that $Z(W^+) = Z(W)^2$.

For every $y \in \mathcal{Y}$ define $\alpha(y) = W(y|0), \ \beta(y) = W(y|1)$ and $\gamma(y) = \sqrt{\alpha(y)\beta(y)}$.

(d) Show that

$$Z(W^{-}) = \sum_{y_1, y_2 \in \mathcal{Y}} \frac{1}{2} \sqrt{\left(\alpha(y_1)\alpha(y_2) + \beta(y_1)\beta(y_2)\right) \left(\alpha(y_1)\beta(y_2) + \beta(y_1)\alpha(y_2)\right)}$$

(e) Show that for every $x, y, z, t \ge 0$ we have $\sqrt{x+y+z+t} \le \sqrt{x} + \sqrt{y} + \sqrt{z} + \sqrt{t}$. Deduce that

$$Z(W^{-}) \leq \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_1) \gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_2) \gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_2) \gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_1) \gamma(y_2) \right).$$

$$(1)$$

(f) Show that every sum in (1) is equal to Z(W). Deduce that $Z(W^{-}) \leq 2Z(W)$.

PROBLEM 3. For a given value $0 \le z_0 \le 1$, define the following random process:

$$Z_0 = z_0, \quad Z_{i+1} = \begin{cases} Z_i^2 & \text{with probability } 1/2 \\ 2Z_i - Z_i^2 & \text{with probability } 1/2 \end{cases} \quad i \ge 0,$$

with the sequence of random choices made independently. Observe that the Z process keeps track of the polarization of a Binary Erasure Channel with erasure probability z_0 as it is transformed by the polar transform: $\mathbb{P}(Z_i = z)$ is exactly the fraction of Binary Erasure Channels having an erasure probability z among the 2^i BEC channels which are synthesized by the polar transform at the *i*th level. The aim of this problem is to prove that for any $\delta > 0$, $\mathbb{P}[Z_i \in (\delta, 1 - \delta)] \to 0$ as *i* gets large.

(a) Define $Q_i = \sqrt{Z_i(1-Z_i)}$. Find $f_1(z)$ and $f_2(z)$ so that

$$Q_{i+1} = Q_i \times \begin{cases} f_1(Z_i) & \text{with probability } 1/2, \\ f_2(Z_i) & \text{with probability } 1/2. \end{cases}$$

(b) Show that $f_1(z) + f_2(z) \le \sqrt{3}$. Based on this, find a $\rho < 1$ so that

$$\mathbb{E}[Q_{i+1} \mid Z_0, \dots, Z_i] \le \rho Q_i.$$

- (c) Show that, for the ρ you found in (b), $\mathbb{E}[Q_i] \leq \frac{1}{2}\rho^i$.
- (d) Show that

$$\mathbb{P}\big[Z_i \in (\delta, 1-\delta)\big] = \mathbb{P}\big[Q_i > \sqrt{\delta(1-\delta)}\big] \le \frac{\rho^i}{2\sqrt{\delta(1-\delta)}}.$$

Deduce that $\mathbb{P}[Z_i \in (\delta, 1 - \delta)] \to 0$ as *i* gets large.