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Problem 1. Suppose we are told that for any n and M , for any binary code with block-
length n, with M codewords, the minimum distance dmin satisfies dmin ≤ d0(M,n) where
d0 is a specified upper bound on minimum distance.

(a) Show that any upper bound d0 can be improved to he following upper bound: for
any n, M , for any binary code with blocklength n with M codewords

dmin ≤ d1(M,n)

where d1(M,n) = min
k: 0≤k≤n

d0(⌈M/2k⌉, n− k).

(b) Consider the trivial bound

d0(M,n) =

{
n, M ≥ 2

∞, M ≤ 1

What is the bound d1 constructed via (a) for this d0?

(c) Suppose we are given a binary code with M words of blocklength n. Fix 1 ≤ i ≤ n
and let a1, . . . , aM be the ith bits if the M codewords. Suppose M1 of the am’s are
’1’ and M0 of them are ’0’. Show that

M∑
m=1

M∑
m′=1
m′ ̸=m

dH(am, a
′
m) = 2M0M1 ≤ M2/2.

(d) Show that for any binary code with M ≥ 2 codewords x1, . . . , xM of blocklength n

M(M − 1)dmin ≤
M∑

m=1

M∑
m′=1
m′ ̸=m

dH(xm, xm′) ≤ nM2/2;

consequently, dmin ≤ ⌊1
2
n M

M−1
⌋.

Problem 2. Let W : {0, 1} −→ Y be a channel where the input is binary and where the
output alphabet is Y . The Bhattacharyya parameter of the channel W is defined as

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1).

Let X1, X2 be two independent random variables uniformly distributed in {0, 1} and let
Y1 and Y2 be the output of the channel W when the input is X1 and X2 respectively, i.e.,
PY1,Y2|X1,X2(y1, y2|x1, x2) = W (y1|x1)W (y2|x2). Define the channels W− : {0, 1} −→ Y2

and W+ : {0, 1} −→ Y2 × {0, 1} as follows:



• W−(y1, y2|u1) = P[Y1 = y1, Y2 = y2|X1 ⊕ X2 = u1] for every u1 ∈ {0, 1} and every
y1, y2 ∈ Y , where ⊕ is the XOR operation.

• W+(y1, y2, u1|u2) = P[Y1 = y1, Y2 = y2, X1 ⊕ X2 = u1|X2 = u2] for every u1, u2 ∈
{0, 1} and every y1, y2 ∈ Y .

(a) Show that W−(y1, y2|u1) =
1

2

∑
u2∈{0,1}

W (y1|u1 ⊕ u2)W (y2|u2).

(b) Show that W+(y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2).

(c) Show that Z(W+) = Z(W )2.

For every y ∈ Y define α(y) = W (y|0), β(y) = W (y|1) and γ(y) =
√
α(y)β(y).

(d) Show that

Z(W−) =
∑

y1,y2∈Y

1

2

√(
α(y1)α(y2) + β(y1)β(y2)

)(
α(y1)β(y2) + β(y1)α(y2)

)
.

(e) Show that for every x, y, z, t ≥ 0 we have
√
x+ y + z + t ≤

√
x +

√
y +

√
z +

√
t.

Deduce that

Z(W−) ≤1

2

( ∑
y1,y2∈Y

α(y1)γ(y2)

)
+

1

2

( ∑
y1,y2∈Y

α(y2)γ(y1)

)

+
1

2

( ∑
y1,y2∈Y

β(y2)γ(y1)

)
+

1

2

( ∑
y1,y2∈Y

β(y1)γ(y2)

)
.

(1)

(f) Show that every sum in (1) is equal to Z(W ). Deduce that Z(W−) ≤ 2Z(W ).

Problem 3. For a given value 0 ≤ z0 ≤ 1, define the following random process:

Z0 = z0, Zi+1 =

{
Z2

i with probability 1/2

2Zi − Z2
i with probability 1/2

i ≥ 0,

with the sequence of random choices made independently. Observe that the Z process
keeps track of the polarization of a Binary Erasure Channel with erasure probability z0
as it is transformed by the polar transform: P(Zi = z) is exactly the fraction of Binary
Erasure Channels having an erasure probability z among the 2i BEC channels which are
synthesized by the polar transform at the ith level. The aim of this problem is to prove
that for any δ > 0, P

[
Zi ∈ (δ, 1− δ)

]
→ 0 as i gets large.

(a) Define Qi =
√

Zi(1− Zi). Find f1(z) and f2(z) so that

Qi+1 = Qi ×

{
f1(Zi) with probability 1/2,

f2(Zi) with probability 1/2.

(b) Show that f1(z) + f2(z) ≤
√
3. Based on this, find a ρ < 1 so that

E
[
Qi+1

∣∣ Z0, . . . , Zi

]
≤ ρQi.
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(c) Show that, for the ρ you found in (b), E[Qi] ≤ 1
2
ρi.

(d) Show that

P
[
Zi ∈ (δ, 1− δ)

]
= P

[
Qi >

√
δ(1− δ)

]
≤ ρi

2
√
δ(1− δ)

.

Deduce that P
[
Zi ∈ (δ, 1− δ)

]
→ 0 as i gets large.
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