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School of Computer and Communication Sciences

Handout 27 Information Theory and Coding
Solutions to Homework 11 Dec. 03, 2024

Problem 1.
Let x and x′ be two different codewords in the extended Hamming code. Let z and z′ be
the parts of x and x′ that come from the Hamming code (i.e., z is all but the last bit of x,
and z′ that of x′), and p and p′ be the bits appended to z and z′ to get x and x′. Since x
and x′ are different then so are z and z′: if z = z′ then p = p′ and x and x′ would have been
the same. Thus, dH(z, z

′) ≥ 3 since z and z′ are different Hamming codewords. On the
other hand, if dH(z, z

′) = 3, then z and z′ must have different parity: if they both had an
even number of 1’s or both had an odd number of 1’s they would have differed in an even
number of places and dH(z, z

′) would have been an even number. Thus, if dH(z, z
′) = 3

then p ̸= p′ and we have dH(x, x
′) = 4. If dH(z, z

′) ≥ 4 then clearly dH(x, x
′) ≥ 4. We thus

see that the minimum distance of the new code is 4.
Consider the following procedure to decode

Given a sequence y, compare it to all the codewords and find the number of
positions in which y differs from them. If there is a unique codeword for which
this number is smallest, declare that codeword. If not, declare ‘errors were
detected’.

If the minimum distance d of a code is an even number, d = 2j, then if a sequence
y differs from the transmitted codeword x by up to j − 1 places, then y will be close to
the transmitted codeword than to any other and the decoder will correctly decode x. If
however, y differs from x in j places, then no other codeword will be closer to y, but there
might be a codeword x′ which also differs from y in j places. In such a case the decoder
will not be able to correct but detect the errors. In particular, if d = 4, then all single
errors are corrected and all double errors are detected (may even be corrected).

Problem 2.

(a) Note first that the sum of two even-weight codewords is of even weight, the sum of
two odd-weight codewords is of even weight and the sum of an odd-weight codeword
with an even-weight codeword is of odd weight.

If the code contains no odd-weight codeword then we are done. Otherwise let x
be an odd-weight codeword. Then the mapping y 7→ x + y is a bijection between
even-weight and odd-weight codewords, and we conclude that there must be an equal
number of odd-weight and even-weight codewords.

(b) The same proof above applies: either all codewords have a zero at the nth digit, or
there is a codeword x with has a 1 in its nth digit. The mapping y 7→ x + y gives a
bijection between codewords who have a zero at the nth digit and codewords which
have a 1 at the nth digit. In the first case, when all codewords have a zero at the nth
digit, one can improve the code by simply deleting the nth digit from each codeword:
no matter what the message is, the same symbol would have been transmitted, giving
no additional information.



(c) To find the average number of 1’s per codewords, one would find the total number of
1’s in all codewords, and divide this sum by the number of codewords. Suppose there
are M codewords. Arrange the codewords in rows, and count the total number of 1’s
by going over columns one by one. Since each column contains at most M/2 ones,
and there are N columns, the total number of 1’s is less than or equal to MN/2.
Dividing by M we see that the average number of 1’s per codeword is at most N/2.

Problem 3. Recall that the minimum distance is also given by the weight of the minimum
weight codeword. Now observe that there exists a codeword x of weight w iff xH = 0 where
H is the parity-check matrix with n rows. This is equivalent to saying that some w rows
of H are linearly dependent. We then know that there exist d rows that are linearly
dependent. However, no combination of d − 1 rows or less are dependent since this case
would give rise to a codeword of weight less or equal to d− 1. This concludes the proof.

Problem 4.

(a) At the first step, we can choose any non-zero column vector with r coordinates. This
will be the first row of our n× r parity-check matrix. Now suppose we have chosen i
rows so that no d− 1 are linearly dependent. They are all non-zero rows. There are
at most (

i

1

)
+ · · ·+

(
i

d− 2

)
distinct linear combinations of these i rows taken d− 2 or fewer at a time.

(b) The total number of r-tuples (include the all-zero one) is 2r. We can then choose
a new row different from the previous ones, linearly independent from the previous
ones, and keep the property that every d− 1 rows are independent.

(c) We can iterate the procedure and we keep doing so as long as

1 +

(
i

1

)
+ · · ·

(
i

d− 2

)
< 2r

where the first term counts the all-zero vector. At the last step, we can do so iff

1 +

(
n− 1

1

)
+ · · ·

(
n− 1

d− 2

)
< 2r.

(d) Multiply both sides of the previous inequality by M = 2k gives the result since
r = n− k.

Problem 5. Let S0 be the set of codewords at Hamming distance n from x0 and S1 be
the set of codewords at Hamming distance n from x1. For each y in S0, note that x1 + y is
at distance n from x1, and thus {x1 + y : y ∈ S0} ⊂ S1. Similarly, {x1 + y : y ∈ S1} ⊂ S0.
These two relationships yield |S0| ≤ |S1| and |S1| ≤ |S0|, leading to the conclusion that
|S0| = |S1|.

2


