ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 30	Information Theory and Coding
Solutions to Homework 12	Dec. 10, 2024

PROBLEM 1.

- (a) Since C is non-empty, it contains some codeword x. By linearity C must contain x + x. But, for any x, x + x is the all-zero sequence since we are doing modulo-2 sums. So, C contains the all-zero sequence.
- (b) The elements of D' are those sequences of the form x + y where y is in D. Since x is in C and D is a subset of C, any x and y are both in C, and so is their sum.
- (c) Suppose there was an element z common to D and D'. Then z = x + y where y is in D. Since we assumed that D is a linear subset, then z + y is also in D. But z + y equals x, and we arrive at the contradiction that x is in D.
- (d) Since the mapping $y \mapsto x+y$ is a bijection, D and D' are in one-to-one correspondence, and hence have the same number of elements.
- (e) Suppose z_1 and z_2 are in $D \cup D'$. There are four possibilities: (1) both z_1 and z_2 are in D, (2) both z_1 and z_2 are in D', (3) z_1 is in D, z_2 is in D', (4) z_1 is in D', z_2 is in D. In case (1), the linearity of D implies that $z_1 + z_2$ is in D. In case (2), $z_1 = x + y_1$ and $z_2 = x + y_2$ for some y_1 and y_2 both in D, then $z_1 + z_2 = x + x + y_1 + y_2 = y_1 + y_2$ is in D. In case (3) $z_2 = x + y_2$ and $z_1 + z_2 = x + (z_1 + y_2)$, which is in D', and similarly in case (4). Thus in all cases $z_1 + z_2$ is in $D \cup D'$ and we see that $D \cup D'$ is a linear subset of C.
- (f) We thus see that if at the beginning of step (ii) D is a linear subset of C, at the end of step (iii) $D \cup D'$ is linear, is a subset of C because both D and D' are, and has twice as many elements of D since D' has the same number of elements of D and is disjoint from it. Thus, when the algorithm terminates, D contains all elements of C and since it is a subset of C it must equal C. Furthermore, its size, being equal to successive doublings of 1, is a power of 2.

PROBLEM 2.

- (a) Any codeword of \mathcal{C} is of the from $\langle \mathbf{a}, \mathbf{a} \oplus \mathbf{b} \rangle$ with $\mathbf{a} \in \mathcal{C}_1$ and $\mathbf{b} \in \mathcal{C}_2$. Given two codewords $\langle \mathbf{u}', \mathbf{u}' \oplus \mathbf{v}' \rangle$ and $\langle \mathbf{u}'', \mathbf{u}'' \oplus \mathbf{v}'' \rangle$ of \mathcal{C} , their sum is $\langle \mathbf{u}, \mathbf{u} \oplus \mathbf{v} \rangle$ with $\mathbf{u} = \mathbf{u}' \oplus \mathbf{u}''$ and $\mathbf{v} = \mathbf{v}' \oplus \mathbf{v}''$. Since \mathcal{C}_1 and \mathcal{C}_2 are linear codes $\mathbf{u} \in \mathcal{C}_1$ and $\mathbf{v} \in \mathcal{C}_2$. Thus the sum of any two codewords of \mathcal{C} is a codeword of \mathcal{C} and we conclude that \mathcal{C} is linear.
- (b) If $(\mathbf{u}, \mathbf{v}) \neq (\mathbf{u}', \mathbf{v}')$, then either $\mathbf{u} \neq \mathbf{u}'$, or, $\mathbf{u} = \mathbf{u}'$ and $\mathbf{v} \neq \mathbf{v}'$. In either case $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle \neq \langle \mathbf{u}' | \mathbf{u}' \oplus \mathbf{v}' \rangle$: in the first case the first halves differ, in the second case the second halves differ. Thus no two of the (\mathbf{u}, \mathbf{v}) pairs are mapped to the same element of \mathcal{C} , and the code has exactly $M_1 M_2$ elements. Its rate is $\frac{1}{2n} \log(M_1 M_2) = \frac{1}{2} R_1 + \frac{1}{2} R_2$.
- (c) As $\mathbf{v} = \mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}$,

$$w_H(\mathbf{v}) = w_H(\mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}) \le w_H(\mathbf{u}) + w_H(\mathbf{u} \oplus \mathbf{v})$$

by the triangle inequality. Noting that the right hand side is $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle)$ completes the proof.

- (d) If $\mathbf{v} = \mathbf{0}$ we have $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle = \langle \mathbf{u} | \mathbf{u} \rangle$ which has twice the Hamming weight of \mathbf{u} . Otherwise (c) gives $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle) \ge w_H(\mathbf{v})$.
- (e) Since C is linear its minimum distance equals the minimum weight of its non-zero codewords. If $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle$ is non-zero either $\mathbf{v} \neq \mathbf{0}$, or, $\mathbf{v} = \mathbf{0}$ and $\mathbf{u} \neq \mathbf{0}$. By (d), in the first case $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle) \geq w_H(\mathbf{v}) \geq d_1$, in the second case $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle) \geq 2w_H(\mathbf{u}) \geq 2d_2$. Thus $d \geq \min\{2d_1, d_2\}$.
- (f) Let \mathbf{u}_0 be the minimum weight non-zero codeword of \mathcal{C}_1 and let \mathbf{v}_0 be the minimum weight non-zero codeword of \mathcal{C}_2 . Note that $\langle \mathbf{u}_0 | \mathbf{u}_0 \rangle$ is a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u} = \mathbf{u}_0$, $\mathbf{v} = \mathbf{0}$). It has weight $2d_1$. Similarly, $\langle \mathbf{0} | \mathbf{v}_0 \rangle$ is also a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u} = \mathbf{0}$, $\mathbf{v} = \mathbf{v}_0$). It has weight d_2 . Consequently $d \leq \min\{2d_1, d_2\}$. In light of (e) we find $d = \min\{2d_1, d_2\}$.

This method of constructing a longer code from two shorter ones is known under several names: 'Plotkin construction', 'bar product', '(u|u+v) construction' appear regularly in the literature. Compare this method to the 'obvious' method of letting the codewords to be $\langle \mathbf{u} | \mathbf{v} \rangle$. The simple method has the same block-length and rate as we have here, but its minimum distance is only min $\{d_1, d_2\}$. The factor two gained in d_1 by the bar product is significant, and many practical code families can be built from very simple base codes by a recursive application of the bar product. Notable among them are the family of Reed–Muller codes.

Problem 3.

(a) Suppose **x** and **x'** are two codewords in C. Then for $\forall i = 0, 1, ..., m - 1$,

$$x_0 + x_1 \alpha_i + \dots + x_{n-1} \alpha_i^{n-1} = 0$$

$$x'_0 + x'_1 \alpha_i + \dots + x'_{n-1} \alpha_i^{n-1} = 0$$

Therefore,

$$(x_0 + x'_0) + (x_1 + x'_1)\alpha_i + \dots + (x_{n-1} + x'_{n-1})\alpha_i^{n-1} = 0$$
 for $\forall i = 0, 1, \dots, m-1$.

which shows $\mathbf{x} + \mathbf{x}'$ is also a codeword.

(b) $x(D) = x_0 + x_1D + \dots + x_{n-1}D^{n-1}$ is a polynomial of degree (at most) n-1 and (x_0, \dots, x_{n-1}) is a codeword if $\alpha_0, \alpha_1, \dots, \alpha_{m-1}$ are *m* of its roots. This means

$$x(D) = (D - \alpha_0)(D - \alpha_1)\dots(D - \alpha_{m-1})h(D) = g(D)h(D)$$

for some h(D). Note that h(D) can have degree (at most) n - m - 1. On the other side, there is a one-to-one correspondence between the codewords of C and degree n - 1 polynomials. Since g(D) is fixed for all codewords, a polynomial x(D) corresponding to a codeword \mathbf{x} is determined by choosing the coefficients of $h(D) = h_0 + h_1 D + \cdots + h_{n-m-1} D^{n-m-1}$. Since $h_j \in \mathcal{X}$ for $j = 0, 1, \ldots, n - m - 1$ we have q^{n-m} different h(D)s and, thus, q^{n-m} codewords.

(c) For every column vector $\mathbf{u} = [u_0, u_1, \dots, u_{m-1}]^T$, $A\mathbf{u} = [u(1), u(\beta), \dots, u(\beta^{n-1})]^T$. Consequently, $A\mathbf{u} = \mathbf{0}$ means u(D) has n roots which is impossible (since it is a polynomial of degree m - 1 < n). (d) Using the same reasoning as in (c) one can verify that $\mathbf{x} = (x_1, \ldots, x_n)$ is a codeword iff $\mathbf{x}A = \mathbf{0}$. This means A is the parity-check matrix of the code C. Since the code is linear, using Problem 4 of Homework 11 we know that has minimum distance d iff every d - 1 rows of H are linearly independent and some d rows are linearly dependent. That A has rank m implies there are no m linearly dependent rows thus $d \ge m + 1$. On the other side, we know from the Singleton bound that a code with q^{n-m} codewords and block-length n has minimum distance $d \le m + 1$. Thus we conclude that d = m + 1.

Problem 4.

- (a) As *H* had four columns the blocklength n = 4. Observe that we can rearrange $H\mathbf{x} = \mathbf{0}$ to solve for x_1, x_2 in terms of x_3, x_4 . As there are 3^2 possibilities for (x_3, x_4) the code has M = 9 codewords. The code rate is thus $\frac{1}{2} \log 3$.
- (b) The receiver receives $\mathbf{y} = \mathbf{x} + \mathbf{z}$ where \mathbf{z} is either the zero vector, or it has only a single nonzero component z_i which can take the value 1 or 2. With h_i denoting the *i*th column of H, $H\mathbf{y} = H\mathbf{z}$ is either zero, or takes on the value h_i (if $z_i = 1$) or $2h_i$ $(z_i = 2)$. Since the collection of eight vectors $h_1, 2h_1, h_2, 2h_2, h_3, 2h_3, h_4, 2h_4$ are all distinct and different from zero, the receiver can identify if z is the zero vector or the i and the value of z_i from $H\mathbf{y}$
- (c) This will increase the block length to 5 and the number of codewords to 3^3 yielding a new rate of $\frac{3}{5} \log 3$ which is larger than the rate found in (a).
- (d) We need to ensure that the new column and its multiple by 2 is different from the zero and the collection of 8 vectors above. We see that this is not the case for any of the vectors listed.
- (e) Now z_i can take on only the value 1 (but not 2). Thus to ensure detection and correction we only need h_i 's to be distinct and different from zero. Now, all columns except the zero column in (d) can be added.