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Problem 1. (a) Given a code C with M codewords and blocklength n, and 0 ≤ k ≤ n,
partition the codewords into 2k groups according to their first k bits. The group
with the largest number of codewords will contain at least M ′ = ⌈M/2k⌉ codewords.
The minimum distance within that group is upper bounded by d0(M

′, n − k) since
all codewords in the group agree in their first k bits. Thus the minimum distance
of the code C is upper bounded by d0(⌈M/2k⌉, n − k). Since this is true for each
k ∈ {0, . . . , n} we conclude that dmin ≤ d1(M,n).

(b) With d0(M,n) =

{
n M ≤ 2

∞ M ≤ 1
the minimum over k is obtained by choosing k as

large as possible while keeping M/2k > 1. Thus the bound d1 says ”dmin ≤ n − k
when M > 2kn” which is the Singleton bound we derived in class.

(c) Each pair (m,m′) contributes 1 to the sum when am = 0 and am′ = 1 or when am = 1
and am′ = 0. There are M0M1 pairs of the first type and M1M0 pairs of the second
type. Thus the sum equals 2M0M1. As M0+M1 = M , we have M0M1 ≤ M2/4, from
which the final inequality follows.

(d) As dH(xm,xm′) ≥ dmin for every m ̸= m′, the first inequality follows by summing
both sides. For the second write dH(xm,xm′) =

∑n
i=1 dH(xmi, xm′i) to obtain

M∑
m=1

M∑
m′=1
m′ ̸=m

dH(xm,xm′) =
n∑

i=1

M∑
m=1

M∑
m′=1
m′ ̸=m

dH(xmi, xm′i).

By (c) for each i the inner double-sum is upper bounded by M2/2 and the conclusion
follows.

Problem 2.

(a) We have

W−(y1, y2|u1) = PY1,Y2|X1⊕X2(y1, y2|u1) =
PY1,Y2,X1⊕X2(y1, y2, u1)

PX1⊕X2(u1)
(∗)
= 2PY1,Y2,X1⊕X2(y1, y2, u1)

= 2
∑

u2∈{0,1}

PY1,Y2,X1⊕X2,X2(y1, y2, u1, u2)

(∗∗)
= 2

∑
u2∈{0,1}

PY1,Y2,X1,X2(y1, y2, u1 ⊕ u2, u2)

= 2
∑

u2∈{0,1}

PY1,Y2|X1,X2(y1, y2|u1 ⊕ u2, u2)PX1,X2(u1 ⊕ u2, u2)

= 2
∑

u2∈{0,1}

W (y1|u1 ⊕ u2)W (y2|u2)
1

22

=
1

2

∑
u2∈{0,1}

W (y1|u1 ⊕ u2)W (y2|u2),



where (∗) follows from the fact that if X1, X2 are independent and uniform then
X1 ⊕X2 is also uniform. (∗∗) follows from the fact that

(X1 ⊕X2 = u1 and X2 = u2) ⇔ (X1 = u1 ⊕ u2 and X2 = u2).

(b) We have

W+(y1, y2, u1|u2) = PY1,Y2,X1⊕X2|X2(y1, y2, u1|u2) =
PY1,Y2,X1⊕X2,X2(y1, y2, u1, u2)

PX2(u2)

= 2PY1,Y2,X1⊕X2,X2(y1, y2, u1, u2)

(∗)
= 2PY1,Y2,X1,X2(y1, y2, u1 ⊕ u2, u2)

= 2PY1,Y2|X1,X2(y1, y2|u1 ⊕ u2, u2)PX1,X2(u1 ⊕ u2, u2)

= 2W (y1|u1 ⊕ u2)W (y2|u2)
1

22

=
1

2
W (y1|u1 ⊕ u2)W (y2|u2),

where (∗) follows from the fact that

(X1 ⊕X2 = u1 and X2 = u2) ⇔ (X1 = u1 ⊕ u2 and X2 = u2).

(c) We have

Z(W+) =
∑

y1,y2∈Y,
u1∈{0,1}

√
W+(y1, y2, u1|0)W+(y1, y2, u1|1)

=
1

2

∑
y1,y2∈Y,
u1∈{0,1}

√
W (y1|u1 ⊕ 0)W (y2|0)W (y1|u1 ⊕ 1)W (y2|1)

=
1

2

( ∑
y1,y2∈Y

√
W (y1|0⊕ 0)W (y2|0)W (y1|0⊕ 1)W (y2|1)

)

+
1

2

( ∑
y1,y2∈Y

√
W (y1|1⊕ 0)W (y2|0)W (y1|1⊕ 1)W (y2|1)

)

=
1

2

( ∑
y1,y2∈Y

√
W (y1|0)W (y2|0)W (y1|1)W (y2|1)

)

+
1

2

( ∑
y1,y2∈Y

√
W (y1|1)W (y2|0)W (y1|0)W (y2|1)

)

=
1

2

(∑
y1∈Y

√
W (y1|0)W (y1|1)

)(∑
y2∈Y

√
W (y2|0)W (y2|1)

)

+
1

2

(∑
y1∈Y

√
W (y1|0)W (y1|1)

)(∑
y2∈Y

√
W (y2|0)W (y2|1)

)

=
1

2
Z(W ) · Z(W ) +

1

2
Z(W ) · Z(W ) = Z(W )2.
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(d) For every y1, y2 ∈ Y , we have:

W−(y1, y2|0) =
1

2

∑
u2∈{0,1}

W (y1|0⊕ u2)W (y2|u2) =
1

2

∑
u2∈{0,1}

W (y1|u2)W (y2|u2)

=
1

2
W (y1|0)W (y2|0) +

1

2
W (y1|1)W (y2|1) =

1

2
α(y1)α(y2) +

1

2
β(y1)β(y2)

=
1

2
(α(y1)α(y2) + β(y1)β(y2)),

and

W−(y1, y2|1) =
1

2

∑
u2∈{0,1}

W (y1|1⊕ u2)W (y2|u2)

=
1

2
W (y1|1⊕ 0)W (y2|0) +

1

2
W (y1|1⊕ 1)W (y2|1)

=
1

2
W (y1|1)W (y2|0) +

1

2
W (y1|0)W (y2|1) =

1

2
β(y1)α(y2) +

1

2
α(y1)β(y2)

=
1

2
(α(y1)β(y2) + β(y1)α(y2)).

We have

Z(W−) =
∑

y1,y2∈Y

√
W−(y1, y2|0)W−(y1, y2|1)

=
1

2

∑
y1,y2∈Y

√(
α(y1)α(y2) + β(y1)β(y2)

)(
α(y1)β(y2) + β(y1)α(y2)

)
.

(e) For every x, y ≥ 0, we have x+ y ≤ x+ y + 2
√
xy = (

√
x+

√
y)2 which implies that√

x+ y ≤
√
x+

√
y. Therefore, for every x, y, z, t ≥ 0 we have:

√
x+ y + z + t ≤

√
x+ y +

√
z + t ≤

√
x+

√
y +

√
z +

√
t.

Therefore,

Z(W−)

=
1

2

∑
y1,y2∈Y

√(
α(y1)α(y2) + β(y1)β(y2)

)(
α(y1)β(y2) + β(y1)α(y2)

)
=
1

2

∑
y1,y2∈Y

√
α(y1)2γ(y2)2 + α(y2)2γ(y1)2 + β(y2)2γ(y1)2 + β(y1)2γ(y2)2

(∗)
≤ 1

2

∑
y1,y2∈Y

(√
α(y1)2γ(y2)2 +

√
α(y2)2γ(y1)2 +

√
β(y2)2γ(y1)2 +

√
β(y1)2γ(y2)2

)
=
1

2

( ∑
y1,y2∈Y

α(y1)γ(y2)

)
+

1

2

( ∑
y1,y2∈Y

α(y2)γ(y1)

)

+
1

2

( ∑
y1,y2∈Y

β(y2)γ(y1)

)
+

1

2

( ∑
y1,y2∈Y

β(y1)γ(y2)

)
,

where (∗) follows from the inequality
√
x+ y + z + t ≤

√
x+

√
y +

√
z +

√
t.
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(f) Note that
∑
y∈Y

α(y) =
∑
y∈Y

β(y) = 1 and
∑
y∈Y

γ(y) = Z(W ). Therefore,

Z(W−) ≤ 1

2

( ∑
y1,y2∈Y

α(y1)γ(y2)

)
+

1

2

( ∑
y1,y2∈Y

α(y2)γ(y1)

)

+
1

2

( ∑
y1,y2∈Y

β(y2)γ(y1)

)
+

1

2

( ∑
y1,y2∈Y

β(y1)γ(y2)

)

=
1

2

(∑
y1∈Y

α(y1)

)(∑
y2∈Y

γ(y2)

)
+

1

2

(∑
y2∈Y

α(y2)

)(∑
y1∈Y

γ(y1)

)

+
1

2

(∑
y2∈Y

β(y2)

)(∑
y1∈Y

γ(y1)

)
+

1

2

(∑
y1∈Y

β(y1)

)(∑
y2∈Y

γ(y2)

)

=
1

2
1 · Z(W ) +

1

2
1 · Z(W ) +

1

2
1 · Z(W ) +

1

2
1 · Z(W ) = 2Z(W ).

Problem 3.

(a) We have

Qi+1 =
√
Zi+1(1− Zi+1) =

{√
Z2

i (1− Z2
i ) w.p. 1/2√

(2Zi − Z2
i )(1− 2Zi + Z2

i ) w.p. 1/2

=

{√
Z2

i (1− Zi)(1 + Zi) w.p. 1/2√
(2− Zi)Zi(1− Zi)2 w.p. 1/2

=

{√
Zi(1− Zi)

√
Zi(1 + Zi) w.p. 1/2√

Zi(1− Zi)
√

(2− Zi)(1− Zi) w.p. 1/2

=
√

Zi(1− Zi)

{√
Zi(1 + Zi) w.p. 1/2√
(2− Zi)(1− Zi) w.p. 1/2

= Qi

{
f1(Zi) w.p. 1/2

f2(Zi) w.p. 1/2
,

where f1(z) =
√

z(z + 1) and f2(z) =
√
(2− z)(1− z).

(b) We have

f ′
1(z) =

2z + 1

2
√

z(z + 1)

so

f ′′
1 (z) =

4
√
z(z + 1)− (2z + 1)

2(2z + 1)

2
√
z(z + 1)(

2
√

z(z + 1)
)2

=
4z(z + 1)− (2z + 1)2

4
(
z(z + 1)

) 3
2

=
−1

4
(
z(z + 1)

) 3
2

≤ 0.
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Therefore, f1 is concave. By noticing that f2(z) = f1(1− z), we obtain:

f1(z) + f2(z) = f1(z) + f1(1− z) = 2

(
1

2
f1(z) +

1

2
f1(1− z)

)
(∗)
≤ 2f1

(
1

2
z +

1

2
(1− z)

)
= 2f1

(
1

2

)
= 2

√
1

2

(
1

2
+ 1

)
= 2

√
1

2
· 3
2
= 2

√
3

2
=

√
3,

where (∗) follows from the concavity of f1. We have

E
[
Qi+1

∣∣ Z0, . . . , Zi

]
=

1

2
f1(Zi)Qi +

1

2
f2(Zi)Qi =

1

2
(f1(Zi) + f2(Zi))Qi ≤ ρQi,

where ρ =
√
3
2

< 1.

(c) We will show the claim by induction on i ≥ 0. For i = 0, we have Z0 = z0 with
probability 1. Therefore, EQ0 =

√
z0(1− z0).

It is easy to that the function [0, 1] → R defined by z →
√

z(1− z) achieves its

maximum at z = 1
2
, and so EQ0 =

√
z0(1− z0) ≤

√
1

2

(
1− 1

2

)
=

1

2
. Therefore, the

claim is true for i = 0.

Now suppose that the claim is true for i ≥ 0, i.e., EQi ≤ 1
2
ρi. We have

EQi+1 = E
[
E
[
Qi+1

∣∣ Z0, . . . , Zi

]] (∗)
≤ E[ρQi] = ρE[Qi]

(∗∗)
≤ ρ · 1

2
ρi =

1

2
ρi+1,

where (∗) follows from Part (b) and (∗∗) follows from the induction hypothesis. We
conclude that EQi ≤ 1

2
ρi for every i ≥ 0.

(d) By noticing that δ < z < 1− δ if and only if z(1− z) > δ(1− δ), we get:

P
[
Zi ∈ (δ, 1− δ)

]
= P

[
Zi(1− Zi) > δ(1− δ)

]
= P

[√
Zi(1− Zi) >

√
δ(1− δ)

]
= P

[
Qi >

√
δ(1− δ)

] (∗)
≤ EQi√

δ(1− δ)

(∗∗)
≤ ρi

2
√

δ(1− δ)
,

where (∗) follows from the Markov inequality and (∗∗) follows from Part (c). Now

since ρ < 1, we have
ρi

2
√

δ(1− δ)
→ 0 as i → ∞. We conclude that

P
[
Zi ∈ (δ, 1− δ)

]
→ 0 as i gets large.
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