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PrROBLEM 1. (a) Given a code C with M codewords and blocklength n, and 0 < k < n,

partition the codewords into 2* groups according to their first k& bits. The group
with the largest number of codewords will contain at least M’ = [M/2¥] codewords.
The minimum distance within that group is upper bounded by do(M’,n — k) since
all codewords in the group agree in their first k& bits. Thus the minimum distance
of the code C is upper bounded by do([M/2¥],n — k). Since this is true for each
k € {0,...,n} we conclude that dp, < di(M,n).

oo M<I1

large as possible while keeping M /2% > 1. Thus the bound d; says "duyi, < n — k
when M > 2 which is the Singleton bound we derived in class.

_ n M<2 . ) . )
With dy(M,n) = the minimum over £ is obtained by choosing k as

Each pair (m,m’) contributes 1 to the sum when a,, = 0 and @, = 1 or when a,, = 1
and a,, = 0. There are MyM; pairs of the first type and M; M, pairs of the second
type. Thus the sum equals 2MyM;. As My+ M, = M, we have MyM; < M?/4, from
which the final inequality follows.

As dy(Xm, Xm) > dpin for every m # m’, the first inequality follows by summing
both sides. For the second write dg (X, Xp) = Y iy di(Tmi, Tpyi) to obtain

M M n M M
E E dH(Xma Xm/) = E E E dH(xm'h -Tm’i)-
m=1 m’/=1 i=1 m=1 m/=1
m'#m m'#m

By (c) for each i the inner double-sum is upper bounded by M?/2 and the conclusion
follows.

PROBLEM 2.

(a)

We have
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where (k) follows from the fact that if X;, Xy are independent and uniform then
X; @ X is also uniform. (xx) follows from the fact that

(Xl ® X9 =u; and Xq = UQ) =4 (Xl =u; Pug and X, = Ug).
(b) We have
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where (x) follows from the fact that

(X1 b Xy =u; and Xy = Ug) ~ (X1 = U1 D us and Xy = Ug).

(c) We have
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(d) For every y;,y2 € ), we have:
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(e) For every z,y > 0, we have v +y < z +y + 2,/zy = (v/= + \/y)? which implies that
VvV +y < x+/y. Therefore, for every x,y, z,t > 0 we have:
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Therefore,
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where (x) follows from the inequality vz +y + 2z +1 < /T + /J+ 2z + VL.
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(f) Note that Za(y) = Z/B(y) =1 and Z’y(y) = Z(W). Therefore,
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where f1(z) = v/2(z +1) and fa(z) = /(2 —2)(1 — 2).
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Therefore, f; is concave. By noticing that fo(z) = f1(1 — 2), we obtain:
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where (x) follows from the concavity of f;. We have

E[Qi+l ‘ Zo, - - -7Zi} = %fl(Zi)Qi + %f2(Zi)Q (fl( i)+ f2(Z:))Qi < pQi,

where p = ‘/73 < 1.
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(¢) We will show the claim by induction on ¢ > 0. For ¢ = 0, we have Z; = 2, with
probability 1. Therefore, EQy = /z0(1 — 2p).

It is easy to that the function [0,1] — R defined by z — /z(1 — z) achieves its

maximum at z = % and so EQy = v/20(1 — 2¢) - = —. Therefore, the

claim is true for ¢ = 0.

Now suppose that the claim is true for ¢ > 0, i.e., EQ; < %pi. We have
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where (x) follows from Part (b) and (%) follows from the induction hypothesis. We
conclude that EQ; < 1p for every i > 0.

(d) By noticing that § < z <1 —¢ if and only if 2(1 — 2) > (1 — 0), we get:
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where (x) follows from the Markov inequality and (*x) follows from Part (c). Now
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— 0 as i — 00. We conclude that
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since p < 1, we have

P[Z; € (6,1 —6)] — 0 as i gets large.



