Laboratory for Quantum Gases (LQG)
Our laboratory explores the physics of atomic gases cooled down to ultra low temperatures, in the nano-Kelvin regime. We use these atoms to study the complex structures that emerge from the interplay of quantum interferences, interactions between the particles and geometry. Our activities are at the crossing of quantum optics, atomic and molecular physics and condensed matter physics.
Computational Quantum Science Laboratory (CQSL)
Laboratory of Semiconductor Materials (LMSC)
Anna Fontcuberta I Morral, of the Institute of Materials (STI), is co-affiliated to IPHYS. Her lab focuses on the synthesis of novel semiconductor nanostructures and the study of their properties, aiming at two applications that will impact our society in the XXI century: quantum science and renewable energy harvesting.
Our laboratory explores quantum dynamics in nanostructures and small molecules on time scales ranging from femto- to nanoseconds. Our goal is to study quantum decoherence at the nano- and mesoscale, to clarify the role of quantum effects in molecular photophysics and photochemistry, and to explore new nanomaterials for emerging quantum technologies.
Laboratory of Advanced Semiconductors for Photonics and Electronics (LASPE)
Exploring quantized structures based on emerging semiconductors in both photonics and electronics. This covers a broad research area starting from fundamental studies around light-matter interaction in microcavities and nanostructures.
Laboratory of Quantum Information and Computation (QIC)
Zoë Holmes’ research focuses on different areas of quantum computing, including quantum thermodynamics, fluctuation theory, and quantum machine learning algorithms.
Photonic crystals are defined by a periodic modulation of the dielectric function on the wavelength scale in electromagnetic structures. They exhibit many original properties such as enhancement or inhibition of spontaneous emission and numerous applications in applied science like nanophotonics and integrated optics due to their ability to control both light propagation and localization at the wavelength scale. We are mainly working on bi-dimensional structures etching on III-V or Si planar waveguides. We focus mainly on light propagation in the slow light regime and disorder effects, high-Q cavities, hollow photonic crystals structures with a large field overlap with the environment and extension to visible range material systems.
Laboratory of Photonics and Quantum Measurements (LPQM1)
Frequency Combs, Cavity Opto-Mechanics.
Superconductor Quantum Information Laboratory (SQIL)
Our research interests are mainly in the field of quantum computing with superconducting qubits. We operate at the crossing of solid state physics, quantum optics, microwave engineering, and information science. Projects range from making electromagnetic filters to solving quantum many-body problems.
Laboratory of Theoretical Physics of Nanosystems (LTPN)
Many-body physics and optical properties of electronic excitations in semiconductor nanostructures. Quantum optics and photonics. Quantum gases and collective phenomena.
Hybrid Quantum Circuits Laboratory (HQC)
Super-semi hybrid devices for quantum computing and simulation applications.