Laboratory for Topological Matter (LTM)
Aeppli’s scientific research is currently focused on the applications of nanotechnology and photon science to biomedicine and quantum information processing. Projects include the development of optical and microwave tools for medical diagnostics and pharmacology, where we are interested in new drug-target and antibody-antigen binding assays.
Laboratory of Quantum Physics, Topology and Correlations (LQP)
The research of Mitali Banerjee focuses on the understanding of fundamentals of emergent quantum many-body physics. Strong correlations in solid-state systems often make the regular electrons behave differently, and sometimes the resultant quantum states host quasi-particles that are rather immune to local environmental disturbance. These quasi-particles are fundamentally different from electrons or any other fundamental particles.
Laboratory of Nanostructures at Surfaces (LNS)
Professor Harald Brune’s research program focuses on the exploration of the novel physical and chemical properties arising when metals shrink to the nanoscale.
Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES)
Femtosecond dynamics of Cooper pairs condensate in superconductors, melting dynamics of quantum solids, dynamics of surface electric fields in nanostructures and membranes.
Spin Orbit Interaction Spectroscopy (SOIS)
Our research program focusses on the study of the effects of spin-orbit interaction (SOI) on the electronic structure of a variety of materials. Most prominent examples are topological insulators and Rashba systems where the SOI lifts the spin degeneracy, making these materials promising candidates for spintronics applications. Our experimental method of choice is spin- and angle-resolved photoemission using synchrotron radiation.
Computational X-ray Imaging Laboratory (CXI)
Our research focuses on developing methods and algorithms for computational imaging for the next generation X-ray sources. In particular ptychography, nanotomography, and hyperdimensional imaging such as vector, tensor, or spectral tomography. We work in close collaboration with groups at the Swiss Light Source and Switzerland’s X-ray free-electron laser at the Paul Scherrer Institute.
Electron Spectrometry and Microscopy Laboratory (LSME)
Electron microscopy, Angular resolved Electron Energy Loss Spectrometry, Focused Ion Beam nano-tomography.
Laboratory of Nanoscale Science (LSEN)
Nanoscale science, self-ordering phenomena and in chemistry and physics of surfaces and interfaces.
Laeuchli Laboratory of Theoretical and Computational Physics (LLTCP)
Condensed Matter Theory, Frustrated Quantum Magnetism, Computational Physics, High Performance Computing.
Chair of Condensed Matter Theory (CTMC)
Frédéric Mila is working on several aspects of the problem of strongly correlated electronic systems, with current emphasis on frustrated magnetism and low-dimensional conductors, in the context of several transition metal oxides as well as organic conductors.
Daniele Mari is an expert in mechanical spectroscopy. His work focusses on the microscopic understanding of nucleation mechanisms and the evolution of domains and grain boundaries in metals and composites, in particular for technical applications such as composites for cutting tools.
Chair of Atomic Scale Simulation (CSEA)
The research activity covers the study of atomic-scale phenomena both from the structural and dynamical point of view. The aim is to complement experiment by providing a realistic description of the mechanisms occurring on the atomic and nanometer scale.
Laboratory for Quantum Magnetism (LQM)
We study mainly magnetic phenomena in correlated electron materials ranging from local spin clusters to novel superconductors. Our thrust is on combination of the powerful techniques of neutron scattering at large scale facilities with in house measurements.
Laboratory for Ultrafast Dynamics of Quantum Materials (LUQ)
Christian Rüegg’s work has a particular focus on strongly correlated quantum phenomena in low-dimensional magnetic materials.
Christian Wäckerlin’s research focuses on nanoscience and quantum engineering, concentrating mainly on investigating polymers with weak intermolecular bonds.
Chair of Computational Condensed Matter Physics (C3MP)
Theoretical and computational physics of Dirac fermion materials (graphene and topological insulators) with strong emphasis on their prospective technological applications.