
Quantum Field Theory

Set 19: solutions

Exercise 1

Given the Lagrangian:

L = −1

4
FµνF

µν +
1

2
M2AµA

µ + ψ̄(i6∂ − q 6A)ψ,

the equations of motion for the vector field are:

−∂µ(∂µAρ − ∂ρAµ) = M2Aρ − Jρ,

where Jρ ≡ qψ̄γρψ. In Fourier space they read:

[(k2 −M2)gµρ − kµkρ]Ãµ(k) = −J̃ρ(k).

Expanding for k �M , we get:

Ãµ(k) ' 1

M2
J̃µ(k) =⇒ Aµ(x) ' 1

M2
Jµ(x) =

q

M2
ψ̄(x)γµψ(x).

Note that the same result can be obtained by solving the equation of motion for the field Aµ without any ap-
proximation, and then taking the low energy limit of the solution. In this case we consider the Green’s function
Gσα(x), satisfying the defining equation:

[−(∂µ∂
µ +M2)gρσ + ∂ρ∂σ]Gσα(x) = δραδ

(4)(x).

To find the explicit form of the Green’s function it is convenient to work in Fourier space, where the equation
becomes [(k2 −M2)gρσ − kρkσ]G̃σα(k) = δρα. Looking for a solution of the form G̃σα(k) = Akσkα + Bgσα (the
only two tensor structures available), we get in the end:

G̃σα(k) =
1

k2 −M2

(
gσα −

kσkα
M2

)
.

The solution for the field Aµ is then given by the convolution of Gσα(x) with Jα:

Aµ(x) = −
∫
d4y

∫
d4k

(2π)4

1

k2 −M2

(
gµα −

kµkα
M2

)
e−ik(x−y)Jα(y).

In the low energy limit k �M we obtain:

Aµ(x) '
∫
d4y

∫
d4k

(2π)4

gµα
M2

e−ik(x−y)Jα(y) =
Jµ(x)

M2
.

Plugging this result in the equation of motion for the field ψ, namely (i 6∂ − q 6A)ψ = 0, we find:(
i∂µ − q2

M2
ψ̄γµψ

)
γµψ = 0,

which can be interpreted as derived from a Fermi effective Lagrangian:

LF = ψ̄i6∂ψ − q2

2M2
ψ̄γµψ ψ̄γµψ.



Exercise 2

In general, a state with n-particles and m-antiparticles can be expressed as the superposition of eigenstates of the
momentum:

|Φ〉 =

∫
dΩ~p1 ...dΩ~pn dΩ~q1 ...dΩ~qmf(~p1, ..., ~pn, ~q1, ..., ~qm)a†(~p1)...a†(~pn) b†(~q1)...b†(~qm)|0〉.

In the simple case of a system consisting of a particle and an anti-particle in the center of mass (~p1 = −~q1) with
a defined angular momentum l we have:

|Φl〉 =

∫
dΩ~p fl(~p,−~p)a†(~p)b†(−~p)|0〉,

where fl(~p,−~p) is the wave function describing a state with a given angular momentum (it is actually a superpo-
sition of spherical harmonics with total angular momentum l) and satisfies the property:

fl(~p,−~p) = (−1)lfl(−~p, ~p) .

Let us now perform a parity transformation: in general each particle acquires a multiplicative phase ηP but since
the antiparticle gets the same factor ηP and η2

P = 1 this factor never appears. In addition to this, the spatial
momenta are inverted:

P |Φl〉 =

∫
dΩ~p fl(~p,−~p)Pa†(~p)P † Pb†(−~p)P †|0〉

=

∫
dΩ~p fl(~p,−~p) a†(−~p) b†(~p)|0〉

=

∫
dΩ~p fl(−~p, ~p) a†(~p) b†(−~p)|0〉 = (−1)l|Φl〉,

where in the first line we have inserted P †P = 1 and we have used the invariance of the vacuum P |0〉 = |0〉. Note
also that P † = P , since we require that acting twice with parity has to be equal to the identity transformation,
thus POP † = P †OP for any operator O. Therefore a state made of a scalar particle-antiparticle pair with a given
angular momentum changes by a factor (−1)l under parity.
Let’s now consider a state consisting of a fermionic particle-antiparticle pair. We can write such a state as:

|Ψl,S〉 =
∑
r,t

∫
dΩ~p fl(~p,−~p)χS(r, t)d̃†(~p, r)b†(−~p, t)|0〉,

where the two functions satisfy:

fl(~p,−~p) = (−1)lfl(−~p, ~p) , χS(t, r) = (−1)S+1χS(r, t).

Notice that the transformation property for the spin function χS(r, t) reflects the fact that the product of two spin
1/2 states is symmetric if the total spin is 1 and is antisymmetric if the total spin is 0. Again we can apply the
parity operator:

P |Ψl,S〉 =
∑
r,t

∫
dΩ~p fl(~p,−~p)χS(r, t)P d̃†(~p, r)P † Pb†(−~p, t)P †|0〉

= −
∑
r,t

∫
dΩ~p fl(~p,−~p)χS(r, t) d̃†(−~p, r) b†(~p, t) |0〉 = (−1)l+1|Ψl,S〉.

Notice that P doesn’t touch the spins.

Exercise 3

The transformation properties of a Weyl fermion under Charge-conjugation are:

C† χL C = ηLεχ
∗
R,

C† χR C = ηRεχ
∗
L.
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Let’s apply them to the Lagrangian of a Dirac fermion:

C†LC = iC† χ†L C σ̄
µ∂µ C

† χL C + iC† χ†R Cσ
µ∂µC

† χR C −m(C† χ†R C C
† χL C + h.c.)

= i(εχ∗R)†σ̄µ∂µ εχ
∗
R + i(εχ∗L)†σµ∂µ εχ

∗
L −m(η∗RηL(εχ∗L)†εχ∗R + h.c)

= iχTRε
T σ̄µ∂µ εχ

∗
R + iχTLε

Tσµ∂µ εχ
∗
L −m(η∗RηLχ

T
Lε
T εχ∗R + h.c)

= iχTR(σµ∂µ)T χ∗R + iχTL(σ̄µ∂µ)T χ∗L −m(η∗RηLχ
T
Lχ
∗
R + h.c).

Where we have used εT (σ̄µ)ε = (12,−ε(σ̄i)ε) = (σµ)T and εT ε = 12. At this point we can integrate the Lagrangian
by parts (recall that it is the action that must be invariant under a symmetry):

C†LC = −i∂µχTR(σµ)T χ∗R − i∂µχTL(σ̄µ)T χ∗L −m(η∗RηLχ
T
Lχ
∗
R + h.c).

In order to simplify we write the indices explicitly:

C†LC = −i∂µχRα(σµ)Tαβ χ
∗
Rβ − i∂µχLα(σ̄µ)Tαβ χ

∗
Lβ −m(η∗RηLχLαχ

∗
Rα + h.c)

= −i∂µχRα(σµ)βα χ
∗
Rβ − i∂µχLα(σ̄µ)βα χ

∗
Lβ −m(η∗RηLχLαχ

∗
Rα + h.c)

= iχ∗Rβ(σµ)βα ∂µχRα + iχ∗Lβ(σ̄µ)βα ∂µχLα +m(η∗RηLχ
∗
RαχLα + h.c),

where in the last step we have switched the order of the fermions and used the fact that two fermions anti-commute.
Finally (up to total derivatives):

C†LC = iχ†L σ̄
µ∂µ χL + iχ†Rσ

µ∂µχR +m(η∗RηLχ
†
RχL + ηRη

∗
Lχ
†
LχR).

We see that the only way to achieve the invariance of the Dirac action is to impose η∗RηL = −1.
Note that this condition can also be easily obtained by noting that, applying twice the charge conjugation operator
on a Weyl spinor, one should get back the spinor itself: C†C†χLCC = C†ηLεχ

∗
RC = ηLη

∗
Rε

2χL = χL, which implies
η∗RηL = −1 since ε2 = −1. Note also that, in order to satisfy the physical requirement C2 = 1, it must be C = C†

(since C is unitary), as it is for parity.
On a Dirac spinor, the action of charge conjugation is

C†
(
χL
χR

)
C =

(
−ηL 0

0 ηR

)
︸ ︷︷ ︸

ηC

i

(
0 1
1 0

)(
0 σ2

−σ2 0

)
︸ ︷︷ ︸

γ0γ2

(
0 1
1 0

)(
χ∗L
χ∗R

)
︸ ︷︷ ︸

ψ̄T

,

where we have used σ2 = −iε. This proves that UC = iγ0γ2. Note that the choice ηL = −1, ηR = 1, compatible
with the constraint η∗RηL = −1, the matrix ηC can be eliminated from the formalism since it becomes the identity.

Exercise 4

The momentum pµ = (E, 0, 0, p) and the polarization vector εµ = 1√
2
(0, 1, i, 0) satisfy the Lorentz-invariant

constraint pµεµ = 0, in addition to the normalization conditions εµεµ = −1 and pµpµ = M2.
εµ is an eigenvector of helicity with eigenvalue +1, as can be seen recalling the helicity operator:

h ≡ ~p · ~J
|~p|

= J3 =

 0 −i 0
i 0 0
0 0 0

 ,

and by applying it on ~ε ≡ (1, i, 0).
After a transverse boost in the y direction:

Λ =


γ 0 γβ 0
0 1 0 0
γβ 0 γ 0
0 0 0 1

 ,

we find:

p′µ = (γE, 0, γβE, p) ,

ε′µ =
1√
2

(iγβ, 1, iγ, 0) .
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Note that, correctly, p′µε′µ = 0.
In order to decompose this vector on a basis of vectors with definite helicity, it is convenient to first rotate the
three space in such a way as to align the new z direction to ~p′, namely to perform the transformation:

R =


1 0 0 0
0 1 0 0

0 0 p
γk −βEk

0 0 βE
k

p
γk

 ,

where k ≡ γ−1
√
p2 + (γβE)2. So we get:

p̃µ = γ (E, 0, 0, k) ,

ε̃µ =
1√
2

(
iγβ, 1,

ip

k
,
iγβE

k

)
.

The helicity basis is a set of polarization vectors ε̃(i) with definite helicity; they satisfy the transversality condition
ε̃µ(i)p̃µ = 0, ∀ i = −, 0,+. In this frame they are:

ε̃µ(+) =
1√
2

(0, 1, i, 0) ,

ε̃µ(−) =
1√
2

(0, 1,−i, 0) ,

ε̃µ(0) =
γ

M
(k, 0, 0, E) ,

where the subscripts indicate the helicity eigenvalues.
Decomposing ε̃′µ on this basis yields:

ε̃µ =

(
1 + p/k

2

)
ε̃µ(+) +

(
1− p/k

2

)
ε̃µ(−) +

(
iβM√

2k

)
ε̃µ(0).

Note in particular that starting from a massive vector with positive helicity and performing a transverse boost,
results in a superposition of all possible helicity states. This is different from the case of a massless vector. Indeed,
it has been proven in Set17 (and it can be deduced here as well by taking the limit M → 0) that for the massless
case, starting with a positive helicity state, we end up with a positive helicity state (plus a longitudinal component).
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