Quantum Field Theory

Set 19: solutions

Exercise 1

Given the Lagrangian:

1 1 T
r— _EF“VFW + §M2AMA” + (g — gAY,

the equations of motion for the vector field are:
—0, (0" AP — QP AF) = M2 AP — P,
where J? = qy”1). In Fourier space they read:
(k% — M?)g" — kFRPIAL(K) = TP (k).
Expanding for k < M, we get:

B (F) > T dulk) = Au(n) > (o) = Sl (e).

Note that the same result can be obtained by solving the equation of motion for the field A, without any ap-
proximation, and then taking the low energy limit of the solution. In this case we consider the Green’s function
Goo(z), satisfying the defining equation:

[—(0,0" + M?)gP? + 8P0°1Gpa(z) = 626D ().

To find the explicit form of the Green’s function it is convenient to work in Fourier space, where the equation
becomes [(k? — M?)g?° — kPk°|Gya(k) = 67. Looking for a solution of the form Gy (k) = Akyko + Bgoa (the
only two tensor structures available), we get in the end:

~ 1 koka
Gaa(k) = m (90& - ]\42) .

The solution for the field A, is then given by the convolution of G,q(x) with J*:
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In the low energy limit £ < M we obtain:

dkga—zk:w « J(ZIJ)
0= [ [ Gotie o w =45

Plugging this result in the equation of motion for the field 1, namely (ig — gA)y = 0, we find:
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which can be interpreted as derived from a Fermi effective Lagrangian:

Lp = pigh —
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Exercise 2

In general, a state with n-particles and m-antiparticles can be expressed as the superposition of eigenstates of the
momentum:

|®) = /dQﬁl...dQﬁ” A, A, F(Fry ooy Py Qs ooy G )l (1)l (7,) BT (G1) .7 (G5)|0).

In the simple case of a system consisting of a particle and an anti-particle in the center of mass (p; = —¢;) with
a defined angular momentum [ we have:

) = / 4% (7, —p)at (b} (—)]0),

where f;(p, —p) is the wave function describing a state with a given angular momentum (it is actually a superpo-
sition of spherical harmonics with total angular momentum [) and satisfies the property:

A0 = (=1 fu=5.D) -
Let us now perform a parity transformation: in general each particle acquires a multiplicative phase np but since

the antiparticle gets the same factor np and n% = 1 this factor never appears. In addition to this, the spatial
momenta are inverted:

Ploy) = / 0 f,(7.—) Pa' (5)P' Pb (—5)P'[0)
- / i fi(7,~5) at (—) b (7)[0)
— / 0% fi(—5, ) al (7) b (—)[0) = (~1)!|y),

where in the first line we have inserted PTP = 1 and we have used the invariance of the vacuum P |0) = |0). Note
also that PT = P, since we require that acting twice with parity has to be equal to the identity transformation,
thus POP' = PTOP for any operator O. Therefore a state made of a scalar particle-antiparticle pair with a given
angular momentum changes by a factor (—1)! under parity.

Let’s now consider a state consisting of a fermionic particle-antiparticle pair. We can write such a state as:

0s) = X [ 4% 5 ~Ps (0" G (-5 ]0)

where the two functions satisfy:

L@ =p) = (D =.p),  xs(tr) = (=1)"T xs(r).

Notice that the transformation property for the spin function xg(r, t) reflects the fact that the product of two spin
1/2 states is symmetric if the total spin is 1 and is antisymmetric if the total spin is 0. Again we can apply the
parity operator:

PlUs) = / dQp fi(5, —p) xs(r,t) Pd' (7,7) P Pb! (—p,t) P'|0)
r,t

==, / 4% fu(.~P) xs(r, ) df (—5,r) b1 (5,£) [0) = (=1)" 7" | ).

Notice that P doesn’t touch the spins.

Exercise 3

The transformation properties of a Weyl fermion under Charge-conjugation are:

CTx1 C =nrexh,
CTxr C = nrex}.
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Let’s apply them to the Lagrangian of a Dirac fermion:
ctee =ictxt ca19,Ct xp C +iCt \1, Co9,Ct xr C — m(CT XL, C CT xp C + hc)

= i(ex) 10" 0 exp +ilex) 10" 8, exi, — mngne(ex)Tex + hec)

= ixRe 710, eXh +ixT el 0", et — mMEnLXLeE” €Xf + h.c)

= ixp(0" )" Xg + XL (0" 0,)" XL — mOIRNLX X + hoo).
Where we have used € (6% )e = (12, —€(5%)e) = ()T and e’'e = 15. At this point we can integrate the Lagrangian
by parts (recall that it is the action that must be invariant under a symmetry):

CTLC = =id,xk(0")" Xk — i0,x1,(6")" XT, — mNEnL XL Xk + hec).

In order to simplify we write the indices explicitly:

CTLC = =iBuxra(0")hg XRp — 10X La(6") 55 X1 5 — MNENLX LaX e + h-C)
= —i0uXRa(0")ga Xgrs — 10uXLa(0")pa X1 — MMENLXLaXRa + h-C)
= iXkp(0")ga OuXra +iX75(6") ga OpXLa + MMENLX RaXLa + h.C),

where in the last step we have switched the order of the fermions and used the fact that two fermions anti-commute.
Finally (up to total derivatives):

CYL O =ix} 38, x1 +ixko"duxr +mmEnrXkxe + nrnixE Xr)-

We see that the only way to achieve the invariance of the Dirac action is to impose ngnr = —1.

Note that this condition can also be easily obtained by noting that, applying twice the charge conjugation operator
on a Weyl spinor, one should get back the spinor itself: CTCTy,CC = CTnLexj‘%C = nLnkeXr = X1, which implies
nenr = —1 since €2 = —1. Note also that, in order to satisfy the physical requirement C? = 1, it must be C' = CT
(since C is unitary), as it is for parity.

On a Dirac spinor, the action of charge conjugation is

(e ) (S )G

nc ~0~2 T

where we have used 02 = —ie. This proves that Uc = i7°y2. Note that the choice n, = —1, ng = 1, compatible
with the constraint %1, = —1, the matrix nc can be eliminated from the formalism since it becomes the identity.

Exercise 4

The momentum p* = (E,0,0,p) and the polarization vector e* = %(0, 1,7,0) satisfy the Lorentz-invariant

constraint pte, = 0, in addition to the normalization conditions /s, = —1 and ptp, = M>.
et is an eigenvector of helicity with eigenvalue +1, as can be seen recalling the helicity operator:

L7 0 — 0
h=C"—p=(i 0o 0],
P1 0 0 O
and by applying it on €= (1,4, 0).
After a transverse boost in the y direction:
vy 0 98 0
0 1 0 O
A= ,
w0 v 0
0 0 0 1
we find:
p* = (VE,0,9BE,p),
/-

% (iv8,1,1v,0).
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Note that, correctly, p*cj, = 0.
In order to decompose this vector on a basis of vectors with definite helicity, it is convenient to first rotate the
three space in such a way as to align the new z direction to p’, namely to perform the transformation:

1 0 0 0
0 1 0 0
E=110 o0 % SR
E
0 0 5= ﬁ
where k =y~ 1/p? + (yBE)2. So we get:
o= v(£,0,0,k),
: 1/ ip iyBE
“o 1,2 PR
€ \/i (7’7/87 b k’ k

The helicity basis is a set of polarization vectors £(;) with definite helicity; they satisfy the transversality condition
é’é);ﬁﬂ =0, Vi=—,0,+. In this frame they are:

. 1 .
E?Jr) = ﬁ (0,1,4,0),

1
- _ .
€Ly = 7 (0,1,—4,0),
~ Y
5'?0) = M (k, O7 0, E) s

where the subscripts indicate the helicity eigenvalues.
Decomposing &# on this basis yields:

~ 1+p/k ~[L 17})/[6 ~[L ’LBM =Y
E“_( B >€(+)+ T 5(_)+ ﬁ 5(0).

Note in particular that starting from a massive vector with positive helicity and performing a transverse boost,
results in a superposition of all possible helicity states. This is different from the case of a massless vector. Indeed,
it has been proven in Set17 (and it can be deduced here as well by taking the limit M — 0) that for the massless
case, starting with a positive helicity state, we end up with a positive helicity state (plus a longitudinal component).




