Quantum Field Theory

Set 19: solutions

Exercise 1

Given the Lagrangian:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} M^{2} A_{\mu} A^{\mu}+\bar{\psi}(i \not \partial-q \mathcal{A}) \psi
$$

the equations of motion for the vector field are:

$$
-\partial_{\mu}\left(\partial^{\mu} A^{\rho}-\partial^{\rho} A^{\mu}\right)=M^{2} A^{\rho}-J^{\rho}
$$

where $J^{\rho} \equiv q \bar{\psi} \gamma^{\rho} \psi$. In Fourier space they read:

$$
\left[\left(k^{2}-M^{2}\right) g^{\mu \rho}-k^{\mu} k^{\rho}\right] \tilde{A}_{\mu}(k)=-\tilde{J}^{\rho}(k)
$$

Expanding for $k \ll M$, we get:

$$
\tilde{A}_{\mu}(k) \simeq \frac{1}{M^{2}} \tilde{J}_{\mu}(k) \quad \Longrightarrow \quad A_{\mu}(x) \simeq \frac{1}{M^{2}} J_{\mu}(x)=\frac{q}{M^{2}} \bar{\psi}(x) \gamma_{\mu} \psi(x)
$$

Note that the same result can be obtained by solving the equation of motion for the field A_{μ} without any approximation, and then taking the low energy limit of the solution. In this case we consider the Green's function $G_{\sigma \alpha}(x)$, satisfying the defining equation:

$$
\left[-\left(\partial_{\mu} \partial^{\mu}+M^{2}\right) g^{\rho \sigma}+\partial^{\rho} \partial^{\sigma}\right] G_{\sigma \alpha}(x)=\delta_{\alpha}^{\rho} \delta^{(4)}(x)
$$

To find the explicit form of the Green's function it is convenient to work in Fourier space, where the equation becomes $\left[\left(k^{2}-M^{2}\right) g^{\rho \sigma}-k^{\rho} k^{\sigma}\right] \tilde{G}_{\sigma \alpha}(k)=\delta_{\alpha}^{\rho}$. Looking for a solution of the form $\tilde{G}_{\sigma \alpha}(k)=A k_{\sigma} k_{\alpha}+B g_{\sigma \alpha}$ (the only two tensor structures available), we get in the end:

$$
\tilde{G}_{\sigma \alpha}(k)=\frac{1}{k^{2}-M^{2}}\left(g_{\sigma \alpha}-\frac{k_{\sigma} k_{\alpha}}{M^{2}}\right) .
$$

The solution for the field A_{μ} is then given by the convolution of $G_{\sigma \alpha}(x)$ with J^{α} :

$$
A_{\mu}(x)=-\int d^{4} y \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-M^{2}}\left(g_{\mu \alpha}-\frac{k_{\mu} k_{\alpha}}{M^{2}}\right) e^{-i k(x-y)} J^{\alpha}(y)
$$

In the low energy limit $k \ll M$ we obtain:

$$
A_{\mu}(x) \simeq \int d^{4} y \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{g_{\mu \alpha}}{M^{2}} e^{-i k(x-y)} J^{\alpha}(y)=\frac{J_{\mu}(x)}{M^{2}}
$$

Plugging this result in the equation of motion for the field ψ, namely $(i \not \partial-q \mathcal{A}) \psi=0$, we find:

$$
\left(i \partial^{\mu}-\frac{q^{2}}{M^{2}} \bar{\psi} \gamma^{\mu} \psi\right) \gamma_{\mu} \psi=0
$$

which can be interpreted as derived from a Fermi effective Lagrangian:

$$
\mathcal{L}_{F}=\bar{\psi} i \not \partial \psi-\frac{q^{2}}{2 M^{2}} \bar{\psi} \gamma^{\mu} \psi \bar{\psi} \gamma_{\mu} \psi
$$

Exercise 2

In general, a state with n-particles and m-antiparticles can be expressed as the superposition of eigenstates of the momentum:

$$
|\Phi\rangle=\int d \Omega_{\vec{p}_{1}} \ldots d \Omega_{\vec{p}_{n}} d \Omega_{\vec{q}_{1}} \ldots d \Omega_{\vec{q}_{m}} f\left(\vec{p}_{1}, \ldots, \vec{p}_{n}, \vec{q}_{1}, \ldots, \vec{q}_{m}\right) a^{\dagger}\left(\vec{p}_{1}\right) \ldots a^{\dagger}\left(\vec{p}_{n}\right) b^{\dagger}\left(\vec{q}_{1}\right) \ldots b^{\dagger}\left(\vec{q}_{m}\right)|0\rangle
$$

In the simple case of a system consisting of a particle and an anti-particle in the center of mass $\left(\vec{p}_{1}=-\vec{q}_{1}\right)$ with a defined angular momentum l we have:

$$
\left|\Phi_{l}\right\rangle=\int d \Omega_{\vec{p}} f_{l}(\vec{p},-\vec{p}) a^{\dagger}(\vec{p}) b^{\dagger}(-\vec{p})|0\rangle
$$

where $f_{l}(\vec{p},-\vec{p})$ is the wave function describing a state with a given angular momentum (it is actually a superposition of spherical harmonics with total angular momentum l) and satisfies the property:

$$
f_{l}(\vec{p},-\vec{p})=(-1)^{l} f_{l}(-\vec{p}, \vec{p})
$$

Let us now perform a parity transformation: in general each particle acquires a multiplicative phase η_{P} but since the antiparticle gets the same factor η_{P} and $\eta_{P}^{2}=1$ this factor never appears. In addition to this, the spatial momenta are inverted:

$$
\begin{aligned}
& P\left|\Phi_{l}\right\rangle=\int d \Omega_{\vec{p}} f_{l}(\vec{p},-\vec{p}) P a^{\dagger}(\vec{p}) P^{\dagger} P b^{\dagger}(-\vec{p}) P^{\dagger}|0\rangle \\
& =\int d \Omega_{\vec{p}} f_{l}(\vec{p},-\vec{p}) a^{\dagger}(-\vec{p}) b^{\dagger}(\vec{p})|0\rangle \\
& =\int d \Omega_{\vec{p}} f_{l}(-\vec{p}, \vec{p}) a^{\dagger}(\vec{p}) b^{\dagger}(-\vec{p})|0\rangle=(-1)^{l}\left|\Phi_{l}\right\rangle
\end{aligned}
$$

where in the first line we have inserted $P^{\dagger} P=1$ and we have used the invariance of the vacuum $P|0\rangle=|0\rangle$. Note also that $P^{\dagger}=P$, since we require that acting twice with parity has to be equal to the identity transformation, thus $P O P^{\dagger}=P^{\dagger} O P$ for any operator O. Therefore a state made of a scalar particle-antiparticle pair with a given angular momentum changes by a factor $(-1)^{l}$ under parity.
Let's now consider a state consisting of a fermionic particle-antiparticle pair. We can write such a state as:

$$
\left|\Psi_{l, S}\right\rangle=\sum_{r, t} \int d \Omega_{\vec{p}} f_{l}(\vec{p},-\vec{p}) \chi_{S}(r, t) \tilde{d}^{\dagger}(\vec{p}, r) b^{\dagger}(-\vec{p}, t)|0\rangle
$$

where the two functions satisfy:

$$
f_{l}(\vec{p},-\vec{p})=(-1)^{l} f_{l}(-\vec{p}, \vec{p}), \quad \chi_{S}(t, r)=(-1)^{S+1} \chi_{S}(r, t)
$$

Notice that the transformation property for the spin function $\chi_{S}(r, t)$ reflects the fact that the product of two spin $1 / 2$ states is symmetric if the total spin is 1 and is antisymmetric if the total spin is 0 . Again we can apply the parity operator:

$$
\begin{aligned}
& P\left|\Psi_{l, S}\right\rangle=\sum_{r, t} \int d \Omega_{\vec{p}} f_{l}(\vec{p},-\vec{p}) \chi_{S}(r, t) P \tilde{d}^{\dagger}(\vec{p}, r) P^{\dagger} P b^{\dagger}(-\vec{p}, t) P^{\dagger}|0\rangle \\
& =-\sum_{r, t} \int d \Omega_{\vec{p}} f_{l}(\vec{p},-\vec{p}) \chi_{S}(r, t) \tilde{d}^{\dagger}(-\vec{p}, r) b^{\dagger}(\vec{p}, t)|0\rangle=(-1)^{l+1}\left|\Psi_{l, S}\right\rangle
\end{aligned}
$$

Notice that P doesn't touch the spins.

Exercise 3

The transformation properties of a Weyl fermion under Charge-conjugation are:

$$
\begin{aligned}
& C^{\dagger} \chi_{L} C=\eta_{L} \epsilon \chi_{R}^{*} \\
& C^{\dagger} \chi_{R} C=\eta_{R} \epsilon \chi_{L}^{*}
\end{aligned}
$$

Let's apply them to the Lagrangian of a Dirac fermion:

$$
\begin{aligned}
C^{\dagger} \mathcal{L} C= & i C^{\dagger} \chi_{L}^{\dagger} C \bar{\sigma}^{\mu} \partial_{\mu} C^{\dagger} \chi_{L} C+i C^{\dagger} \chi_{R}^{\dagger} C \sigma^{\mu} \partial_{\mu} C^{\dagger} \chi_{R} C-m\left(C^{\dagger} \chi_{R}^{\dagger} C C^{\dagger} \chi_{L} C+\text { h.c. }\right) \\
& =i\left(\epsilon \chi_{R}^{*}\right)^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \epsilon \chi_{R}^{*}+i\left(\epsilon \chi_{L}^{*}\right)^{\dagger} \sigma^{\mu} \partial_{\mu} \epsilon \chi_{L}^{*}-m\left(\eta_{R}^{*} \eta_{L}\left(\epsilon \chi_{L}^{*}\right)^{\dagger} \epsilon \chi_{R}^{*}+h . c\right) \\
& =i \chi_{R}^{T} \epsilon^{T} \bar{\sigma}^{\mu} \partial_{\mu} \epsilon \chi_{R}^{*}+i \chi_{L}^{T} \epsilon^{T} \sigma^{\mu} \partial_{\mu} \epsilon \chi_{L}^{*}-m\left(\eta_{R}^{*} \eta_{L} \chi_{L}^{T} \epsilon^{T} \epsilon \chi_{R}^{*}+h . c\right) \\
& =i \chi_{R}^{T}\left(\sigma^{\mu} \partial_{\mu}\right)^{T} \chi_{R}^{*}+i \chi_{L}^{T}\left(\bar{\sigma}^{\mu} \partial_{\mu}\right)^{T} \chi_{L}^{*}-m\left(\eta_{R}^{*} \eta_{L} \chi_{L}^{T} \chi_{R}^{*}+h . c\right) .
\end{aligned}
$$

Where we have used $\epsilon^{T}\left(\bar{\sigma}^{\mu}\right) \epsilon=\left(\mathbb{1}_{2},-\epsilon\left(\bar{\sigma}^{i}\right) \epsilon\right)=\left(\sigma^{\mu}\right)^{T}$ and $\epsilon^{T} \epsilon=\mathbb{1}_{2}$. At this point we can integrate the Lagrangian by parts (recall that it is the action that must be invariant under a symmetry):

$$
C^{\dagger} \mathcal{L} C=-i \partial_{\mu} \chi_{R}^{T}\left(\sigma^{\mu}\right)^{T} \chi_{R}^{*}-i \partial_{\mu} \chi_{L}^{T}\left(\bar{\sigma}^{\mu}\right)^{T} \chi_{L}^{*}-m\left(\eta_{R}^{*} \eta_{L} \chi_{L}^{T} \chi_{R}^{*}+h . c\right) .
$$

In order to simplify we write the indices explicitly:

$$
\begin{aligned}
C^{\dagger} \mathcal{L} C= & -i \partial_{\mu} \chi_{R \alpha}\left(\sigma^{\mu}\right)_{\alpha \beta}^{T} \chi_{R \beta}^{*}-i \partial_{\mu} \chi_{L \alpha}\left(\bar{\sigma}^{\mu}\right)_{\alpha \beta}^{T} \chi_{L \beta}^{*}-m\left(\eta_{R}^{*} \eta_{L} \chi_{L \alpha} \chi_{R \alpha}^{*}+h . c\right) \\
& =-i \partial_{\mu} \chi_{R \alpha}\left(\sigma^{\mu}\right)_{\beta \alpha} \chi_{R \beta}^{*}-i \partial_{\mu} \chi_{L \alpha}\left(\bar{\sigma}^{\mu}\right)_{\beta \alpha} \chi_{L \beta}^{*}-m\left(\eta_{R}^{*} \eta_{L} \chi_{L \alpha} \chi_{R \alpha}^{*}+h . c\right) \\
& =i \chi_{R \beta}^{*}\left(\sigma^{\mu}\right)_{\beta \alpha} \partial_{\mu} \chi_{R \alpha}+i \chi_{L \beta}^{*}\left(\bar{\sigma}^{\mu}\right)_{\beta \alpha} \partial_{\mu} \chi_{L \alpha}+m\left(\eta_{R}^{*} \eta_{L} \chi_{R \alpha}^{*} \chi_{L \alpha}+h . c\right),
\end{aligned}
$$

where in the last step we have switched the order of the fermions and used the fact that two fermions anti-commute. Finally (up to total derivatives):

$$
C^{\dagger} \mathcal{L} C=i \chi_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi_{L}+i \chi_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \chi_{R}+m\left(\eta_{R}^{*} \eta_{L} \chi_{R}^{\dagger} \chi_{L}+\eta_{R} \eta_{L}^{*} \chi_{L}^{\dagger} \chi_{R}\right)
$$

We see that the only way to achieve the invariance of the Dirac action is to impose $\eta_{R}^{*} \eta_{L}=-1$.
Note that this condition can also be easily obtained by noting that, applying twice the charge conjugation operator on a Weyl spinor, one should get back the spinor itself: $C^{\dagger} C^{\dagger} \chi_{L} C C=C^{\dagger} \eta_{L} \epsilon \chi_{R}^{*} C=\eta_{L} \eta_{R}^{*} \epsilon^{2} \chi_{L}=\chi_{L}$, which implies $\eta_{R}^{*} \eta_{L}=-1$ since $\epsilon^{2}=-1$. Note also that, in order to satisfy the physical requirement $C^{2}=1$, it must be $C=C^{\dagger}$ (since C is unitary), as it is for parity.
On a Dirac spinor, the action of charge conjugation is

$$
C^{\dagger}\binom{\chi_{L}}{\chi_{R}} C=\underbrace{\left(\begin{array}{cc}
-\eta_{L} & 0 \\
0 & \eta_{R}
\end{array}\right)}_{\eta_{C}} i \underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma^{2} \\
-\sigma^{2} & 0
\end{array}\right)}_{\gamma^{0} \gamma^{2}} \underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\chi_{L}^{*}}{\chi_{R}^{*}}}_{\bar{\psi}^{T}}
$$

where we have used $\sigma^{2}=-i \epsilon$. This proves that $U_{C}=i \gamma^{0} \gamma^{2}$. Note that the choice $\eta_{L}=-1, \eta_{R}=1$, compatible with the constraint $\eta_{R}^{*} \eta_{L}=-1$, the matrix η_{C} can be eliminated from the formalism since it becomes the identity.

Exercise 4

The momentum $p^{\mu}=(E, 0,0, p)$ and the polarization vector $\varepsilon^{\mu}=\frac{1}{\sqrt{2}}(0,1, i, 0)$ satisfy the Lorentz-invariant constraint $p^{\mu} \varepsilon_{\mu}=0$, in addition to the normalization conditions $\varepsilon^{\mu} \varepsilon_{\mu}=-1$ and $p^{\mu} p_{\mu}=M^{2}$.
ε^{μ} is an eigenvector of helicity with eigenvalue +1 , as can be seen recalling the helicity operator:

$$
h \equiv \frac{\vec{p} \cdot \vec{J}}{|\vec{p}|}=J_{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and by applying it on $\vec{\epsilon} \equiv(1, i, 0)$.
After a transverse boost in the y direction:

$$
\Lambda=\left(\begin{array}{cccc}
\gamma & 0 & \gamma \beta & 0 \\
0 & 1 & 0 & 0 \\
\gamma \beta & 0 & \gamma & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

we find:

$$
\begin{aligned}
p^{\prime \mu} & =(\gamma E, 0, \gamma \beta E, p) \\
\varepsilon^{\prime \mu} & =\frac{1}{\sqrt{2}}(i \gamma \beta, 1, i \gamma, 0)
\end{aligned}
$$

Note that, correctly, $p^{\prime \mu} \varepsilon_{\mu}^{\prime}=0$.
In order to decompose this vector on a basis of vectors with definite helicity, it is convenient to first rotate the three space in such a way as to align the new z direction to \vec{p}^{\prime}, namely to perform the transformation:

$$
R=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{p}{\gamma k} & -\frac{\beta E}{k} \\
0 & 0 & \frac{\beta E}{k} & \frac{p}{\gamma k}
\end{array}\right)
$$

where $k \equiv \gamma^{-1} \sqrt{p^{2}+(\gamma \beta E)^{2}}$. So we get:

$$
\begin{aligned}
\tilde{p}^{\mu} & =\gamma(E, 0,0, k) \\
\tilde{\varepsilon}^{\mu} & =\frac{1}{\sqrt{2}}\left(i \gamma \beta, 1, \frac{i p}{k}, \frac{i \gamma \beta E}{k}\right)
\end{aligned}
$$

The helicity basis is a set of polarization vectors $\tilde{\varepsilon}_{(i)}$ with definite helicity; they satisfy the transversality condition $\tilde{\varepsilon}_{(i)}^{\mu} \tilde{p}_{\mu}=0, \quad \forall i=-, 0,+$. In this frame they are:

$$
\begin{aligned}
\tilde{\varepsilon}_{(+)}^{\mu} & =\frac{1}{\sqrt{2}}(0,1, i, 0) \\
\tilde{\varepsilon}_{(-)}^{\mu} & =\frac{1}{\sqrt{2}}(0,1,-i, 0) \\
\tilde{\varepsilon}_{(0)}^{\mu} & =\frac{\gamma}{M}(k, 0,0, E)
\end{aligned}
$$

where the subscripts indicate the helicity eigenvalues.
Decomposing $\tilde{\varepsilon}^{\prime \mu}$ on this basis yields:

$$
\tilde{\varepsilon}^{\mu}=\left(\frac{1+p / k}{2}\right) \tilde{\varepsilon}_{(+)}^{\mu}+\left(\frac{1-p / k}{2}\right) \tilde{\varepsilon}_{(-)}^{\mu}+\left(\frac{i \beta M}{\sqrt{2} k}\right) \tilde{\varepsilon}_{(0)}^{\mu}
$$

Note in particular that starting from a massive vector with positive helicity and performing a transverse boost, results in a superposition of all possible helicity states. This is different from the case of a massless vector. Indeed, it has been proven in Set17 (and it can be deduced here as well by taking the limit $M \rightarrow 0$) that for the massless case, starting with a positive helicity state, we end up with a positive helicity state (plus a longitudinal component).

