
Quantum Field Theory

Set 5: solutions

Exercise 1

The solution of this exercise in contained in the Notes on Lie Groups on the website.

Exercise 2

The explicit form of the three matrices is:

T 1 =

 0 0 0
0 0 −i
0 i 0

 , T 2 =

 0 0 i
0 0 0
−i 0 0

 , T 3 =

 0 −i 0
i 0 0
0 0 0

 .
The group SO(3) is defined as

SO(3) =
{
R ∈ GL(3,R)| RRT = RTR = 1, det(R) = 1

}
Parametrizing a general element of the group using the exponential function, R(α) = eiα

aTa

, one can translate
the constraints on the elements of the group to constraints on the generators:

1 = RRT = (1 + iαaT a)(1 + iαb(T b)T ) +O(α2) =⇒ T a = −(T a)T .

The Algebra of SO(3) is a vector space generated by 3(3 − 1)/2 = 3 antisymmetric objects, together with the
usual commutator [, ]. The three matrices defined at the beginning are

• antisymmetric,

• independent,

• in number equal to the dimension of the space.

Therefore they form a basis for (a representation of) the algebra so(3). Having an explicit representation of the
generators of a Lie Algebra, one can compute the commutators between them and extract the structure constants.
The commutation relations which one obtains in this way are the same as in all the other representations, since
the structure of the algebra of course doesn’t depend on its explicit representation.
In the present case one has

[
T 1, T 2

]
=

 0 0 0
0 0 −i
0 i 0

 0 0 i
0 0 0
−i 0 0

−
 0 0 i

0 0 0
−i 0 0

 0 0 0
0 0 −i
0 i 0


=

 0 0 0
−1 0 0
0 0 0

−
 0 −1 0

0 0 0
0 0 0

 = i

 0 −i 0
i 0 0
0 0 0

 = iT 3.

Similarly one can explicitly compute [
T 2, T 3

]
= iT 1,

[
T 1, T 3

]
= −iT 2,

and identify the structure constant of the group fabc = εabc. This is the Algebra of the angular momentum one
is used to deal with for example in quantum mechanics. The statement that a state |s〉 has angular momentum



J means that it belongs to a vector space on which acts a representation of the rotation group SO(3) (call this
representation j – we will see that representations can be labelled by an integer number). Under the action of the

group, |s〉 transforms according to |s〉 → eiαaT
(j)
a |s〉, where T

(j)
a are the generators of SO(3) in the representation

j.
Coming back to structure constants, it is also possible to extract the commutation relations using the implicit
form (T a)ji = −iεaij : [

T a, T b
]k
i

= (T a)ji (T
b)kj − (T b)ji (T

a)kj = (−i)2εaijεbjk − (−i)2εbijεajk
= εabcεcik = iεabc(T

c)ki ,

where the last equality is a consequence of the identity εaijεbjk + εajkεbji + εabjεjik = 0 (which in the end is the
Jacobi identity for the structure constants of so(3)).
One can show that a general element of the group SO(3) is a rotation acting on three dimensional vectors. To see
this one can consider the fundamental (or defining) representation, that is to say the explicit representation of the
group SO(3) on R3 that we have previously recalled. An element of the group depends on three parameters αa:
one can collect them in a vector and call ~n = ~α/|~α| the direction of this vector and θ = |~α| the modulus of the
vector. It’s easy to prove that the action of the element R(α) = eiα

aTa

on a vector ~x corresponds to a rotation of
this vector of an angle θ around the direction ~n. One can firstly consider an infinitesimal rotation (θ << 1)

R(α)ji xj '
(
1 + iθnaT a +O(α2)

)j
i
xj '

(
δji + iθna(T a)ji+

)
xj = xi + θεaijn

axj

=⇒ R(α) : ~x −→ ~x+ θ ~x ∧ ~n.

One can verify that this is in accord with the usual way of representing a rotation: for example a rotation around
the 3rd direction by an angle θ produces a change in the 1, 2 plane according to x1

x2
x3

 −→

 x1 cos θ + x2 sin θ
x2 cos θ − x1 sin θ

x3

 '
 x1 + x2θ

x2 − x1θ
x3

 =

 x1
x2
x3

+ θ

 x1
x2
x3

 ∧
 0

0
1

 ,

where we have expanded the trigonometric functions for small angles.
One can do more: exponentiating the generators one can obtain the explicit form of an element of SO(3) and
compare it with a generic finite rotation. It’s particularly easy to perform this computation in the simple case
where the rotation is around one of the axes: let’s take again the 3rd direction for concreteness. Recognizing that

(T 3)2n =

 1 0 0
0 1 0
0 0 0

 ≡ A,
then

R(θ~n3) = eiθT
3

= 1 + iθT 3 − 1

2
θ2(T 3)2 + . . .

= iT 3

(
θ − 1

3!
θ3 +

1

5!
θ5 + . . .

)
+A

(
1− 1

2!
θ2 +

1

4!
θ4 + . . .

)
+ 1−A

=

 0 sin θ 0
− sin θ 0 0

0 0 0

+

 cos θ 0 0
0 cos θ 0
0 0 0

+

 0 0 0
0 0 0
0 0 1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
One immediately recognizes the usual form of a rotation by an angle θ in the 1− 2 plane.

Note. The group SO(n), as well as other groups of linear transformations, is usually not defined in abstract
by characterizing its elements g, but specifying the properties of one particular representation (the fundamental
or defining representation): in the case of SO(3) the fundamental representation contains the 3 × 3 orthogonal
matrices with determinant = 1. This does not mean of course that the group has only that representation. For
example, a quantity which is invariant under rotations transforms according to a one dimensional representation
of SO(3) in which the generators are identically = 0, while an object with angular momentum j = 2 transforms
according to a five dimensional representation, i.e. a representation in which the transformations are represented
by 5× 5 matrices.
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The rest of the exercise deals with another group, SU(2), and the relation between this group and the group of
rotations that we have analyzed in the first part. To begin with, one can recall the definition of the group as

SU(2) =
{
U ∈ GL(2,C)| UU+ = U+U = 1, det(U) = 1

}
.

Then one can consider the representation of the group acting on the vector space V defined to be:

V =
{
M ∈M(2,C)| M = M+, Tr(M) = 0

}
,

that is to say the set of hermitian traceless matrices. One can verify that this vector space coincides with the one
that defines the Lie Algebra of SU(2). Indeed for infinitesimal transformations

1 = U†U = (1− iαa(T a)†)(1 + iαbT b) +O(α2) =⇒ T a = (T a)†,

1 = det(eiαT ) = eiαTr(T ) =⇒ Tr(T ) = 0,

therefore the two vector spaces coincide. If one is able to find a basis of V this will also be a basis of the Lie
Algebra of SU(2). A basis of the vector space V is given for example by the three Pauli matrices:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Having a basis of the Lie Algebra it’s possible to compute the commutation relations as we did for SO(3):

[
σ1, σ2

]
=

[
0 1
1 0

] [
0 −i
i 0

]
−
[

0 −i
i 0

] [
1 0
0 −1

]
= 2i

[
1 0
0 −1

]
= 2iσ3,[

σ2, σ3
]

= 2iσ1,
[
σ1, σ3

]
= −2iσ2,

therefore the matrices τa ≡ σa/2 satisfy the algebra of SU(2):[
τa, τ b

]
= iεabcτ

c,

which is exactly the same of that one of SO(3). This is something that happens frequently: given a Lie Group
one and only one Lie Algebra is associated to it, however the converse in not true; given a Lie Algebra there exists
unique a connected and simply connected Lie group associated to it, but there may exist other different groups
without these constraints associated to the same algebra.

To summarize, we are considering a representation of a Lie Group on its Lie Algebra; this particular representation
is called adjoint representation. The action of an element U of the group on an element M of the space V is as
follows:

U : M −→M ′ = UMU†

The above action defines a good representation since

• It’s a linear application from V to V ; indeed (M ′)† = M ′ and Tr(M ′) = Tr(UMU†) = Tr(M) = 0.

• It respect the composition of the group transformations:

U1 : M −→M ′ = U1MU†1 , U2 : M ′ −→M ′′ = U2M
′U†2 ,

U2 ◦ U1 : M −→ (U2 ◦ U1)M(U2 ◦ U1)† = U2U1MU†1U
†
2 = M ′′.

Any hermitian traceless matrix can be written as a linear combination of elements of the basis:

M =

[
y3 y1 − iy2

y1 + iy2 −y3

]
= yiσ

i.

From the above equality one can argue that an element M can be associated to a thee-dimensional vector ~y =
(y1, y2, y3), which is the set of coordinates of the element M in the chosen basis. We know that a representation
of a group is defined as a mapping between the group and the matrices acting on a vector space. After having
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chosen a basis one can also build the explicit form of the matrices associates to the element U of SU(2). Here
there is a scheme of the relations:

Ψ : Group −→ Matrices acting on V

: U −→ Rji
U : V −→ V

: M = yiσ
i −→ UMU† = ỹiσ

i

R : V −→ V

: yi −→ ỹi = Rjiyj .

In order to get the form of the matrix R associated to a given element U one can consider an infinitesimal element
of SU(2) acting on M :

UMU† ' (1 + iαaτa)yiσ
i(1− iαbτ b) = yiσ

i +
i

2

[
σa, σi

]
αayi +O(α2)

= yiσ
i + i(i)εaicσ

cαayi = (yc − εcaiαayi)σc = ỹcσc.

Therefore the matrix Rji associated to the element of the group U is a rotation of an angle θ = |~α| around the
direction identified by ~α. One has to notice an important feature of this relation: the element of the group U and
−U induce the same changing for the vector ~y, therefore they have the same representative. The representation
map is not injective, even if it’s surjective.

To summarize, we have shown that the group SU(2) and SO(3) have the same Lie Algebra, even if they are
different groups. This implies that given a representation of the Algebra one has for sure a representation of
SU(2) (because is connected and simply connected) but not necessarily a representation of the group SO(3). It
may happen however that some vector space support both the representations, as we have seen. In particular the
adjoint representation of SU(2) (the one on it’s Lie Algebra that we have considered in this exercise) provides
automatically a representation of SO(3).

Exercise 3

We now show how one can build an irreducible representation of the Algebra of SU(2) and therefore also a
representation of the Group. Given the commutation relations[

T a, T b
]

= iεabcT
c,

one can compute the following[
T±, T±

]
=

1

2

[
T 1 ± iT 2, T 1 ± iT 2

]
= ± i

2

[
T 1, T 2

]
± i

2

[
T 2, T 1

]
= 0,[

T+, T−
]

=
1

2

[
T 1 + iT 2, T 1 − iT 2

]
= − i

2

[
T 1, T 2

]
+
i

2

[
T 2, T 1

]
= T 3,[

T 3, T±
]

=
1√
2

[
T 3, T 1 ± iT 2

]
=

1√
2

[
T 3, T 1

]
± i√

2

[
T 3, T 2

]
=
iT 2 ± T 1

√
2

= ±T±.

It’s easy to show that the sum of squared generators commutes with all the generators[
3∑
a=1

T aT a, T b

]
=

3∑
a=1

(
T a
[
T a, T b

]
+
[
T a, T b

]
T a
)

= iεabcT
aT c + iεabcT

cT a

= iεabcT
aT c − iεcbaT cT a = 0.

The operator J2 =

3∑
a=1

T aT a commutes with all the generators of the Algebra, therefore commutes with the whole

Group. In an irreducible representation Ψ one can use the Schur’s Lemma to prove that J2 has to be a multiple
of the identity:

Ψ : T a −→ τa Ψ : J2 −→
3∑
a=1

τaτa = µ2 × 1,
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where µ is some constant that we will determine in the following.
Let us consider an irreducible representation where generators are represented by τ±, τ3, τaτa = µ2 × 1, and let
us consider inside the vector space an eigenvector |m〉 of the generator τ3 relative to the eigenvalue m:

τ3|m〉 = m |m〉.

The action of one of the other generators τ± sends |m〉 into another vector |m′〉 which one can show to be still an
eigenvector of τ3 but with a different eigenvalue:

τ3|m′〉 = τ3τ±|m〉 = τ±τ3|m〉+ [τ3, τ±]|m〉 = mτ±|m〉 ± τ±|m〉 = (m± 1)τ±|m〉,

that is to say the τ± generators acting on |m〉 change its eigenvalue by one unity. This is why they are called
raising and lowering operators. More precisely, if we call |m ± 1〉 the state normalized to one respect to a given
scalar product, then

|τ±|m〉|2 = 〈m|(τ±)†τ±|m〉 =
1

2
〈m|(τ1)2 + (τ2)2 ± i[τ1, τ2]|m〉 =

1

2
〈m|µ2 − (τ3)2 ∓ τ3|m〉 =

1

2
(µ2 −m(m± 1))

where it has been used (τ±)† = τ∓. Therefore the correct normalization is

τ±|m〉 =
1√
2

√
µ2 −m(m± 1)|m± 1〉.

Moreover, from the previous equalities one can argue that µ2 −m(m ± 1) ≥ 0, since we deal with a space with
positive definite norm (|τ±|m〉|2 ≥ 0). At the end

m2 + |m| ≤ µ2.

This statement has two important consequences: firstly it’s a proof that µ2 is a positive quantity, and secondly
it imposes a limit on the dimension of an irreducible representation: indeed starting from a given state |m−〉
one can apply the raising operator to get another state, independent from the original one. This will increase
also the value of m of one unity. If one were free to keep on applying τ+ he would end with a violation of the
inequality (note that since the Casimir operator (τ)2 is proportional to the identity, its eigenvalue µ2 is constant,
i.e. does not depend on m). Hence the action of the raising operator has to give a null state at a certain point.
This happens only when m(m + 1) = mmax(mmax + 1) = µ2. Starting from the state |mmax〉 one can apply the
lowering operator to decrease the value of m. As before after a finite number of steps one has to find a null state

(τ−)n+1|mmax〉 ∝ τ−|mmax − n〉 = 0 for some n,

and this will happen when (m− n)(m− n− 1) = mmin(mmin − 1) = µ2. Matching the two relations one finds

mmin(mmin − 1) = mmax(mmax + 1) =⇒ mmax = −mmin.

Moreover mmin has been obtained starting from mmax with an integer number of steps equal to 2mmax + 1. This
restricts the value of mmax to be a positive integer or semi-integer. Summarizing, using the notation mmax = j,
an irreducible representation of the Algebra of SU(2) is characterized by

• A vector space with dimension 2j + 1 with a basis given by the eigenvectors of τ3:

{|m〉} , −j ≤ m ≤ j.

• The generators on this vector space are represented as follows

τ3|m〉 = m|m〉,
3∑
a=1

τaτa|m〉 = µ2|m〉 = j(j + 1)|m〉,

τ±|m〉 =
1√
2

√
j(j + 1)−m(m± 1)|m± 1〉.
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As already said, these are representation of the algebra and therefore also of the SU(2) group. Not all of them
are representations of SO(3). The problem arises when one tries to pass from the algebra (which is somehow a
local representation of the group) to a global representation of the group. SO(3) has indeed the property that a
rotation of 2π around any axis must coincide with the identity. This restricts the value of j to be only integer (we
will see it explicitly in some example).

Finally one can consider some representation:

• j = 0 is the trivial representation and is called scalar representation.

• j = 1/2 is the first non trivial one. It’s only a representation of SU(2) and is called spinorial representation.
It’s composed by two states labelled by the value of j and m: |j = 1/2,m = ±1/2〉.

• j = 1 is a representation of both groups. It is called vectorial representation and corresponds to the adjoint
of SU(2) or the fundamental of SO(3). A basis for this representation is given by three states labelled by

|1, 1〉, |1, 0〉, , |1,−1〉.

More about SU(2) and SO(3)

The Pauli matrices have many properties: in addition to the fact that they satisfy the algebra of SU(2) we can easily
show that they satisfy a different algebra, that involves the anticommutators of two matrices {A,B} = AB+BA.
Indeed

{σa, σb} = 2δab.

as one can directly verify. The above relation is called Clifford’s Algebra. Note that we are not claiming that
any representation of the algebra of SU(2) satisfy also the Clifford’s one. This is only a peculiarity of Pauli
matrices and therefore holds only when we consider the space of 2 × 2 hermitian traceless matrices, not general
representations.
Using the commutator and anticommutator one can easily write the product of two Pauli matrices in terms of one:

σaσb =
1

2
{σaσb}+

1

2
[σaσb] = δab × 12 + iεabcσ

c.

The above expression allows one to exponentiate immediately an element of the SU(2) algebra and get the explicit
form of an element of the group:

i2n

22n(2n)!
αa1 ...αa2n σa1 ...σa2n =

i2n

22n(2n)!
αa1 ...αa2n σa3 ...σa2n(δa1a2 × 12 + iεa1a2cσ

c)

=
i2n|~α|2

22n(2n)!
αa3 ...αa2n σa3 ...σa2n =

i2n|~α|2n

22n(2n)!
× 12,

i2n+1

22n+1(2n+ 1)!
αa1 ...αa2n+1 σa1 ...σa2n+1 =

i2n+1|~α|2n

22n+1(2n+ 1)!
αa2n+1σa2n+1 .

Therefore an element of the group becomes

U(α) = eiα
aσa/2 = 1 + i

αa

2
σa − 1

8
αaαbσaσb + ... = 12 ×

(
1− |~α|

2

4 · 2!
+ . . .

)
+ iσa

αa

|~α|
·
(
|~α|
2
− |~α|

3

8 · 3!
. . .

)
= cos

(
|~α|
2

)
× 12 + inaσa sin

(
|~α|
2

)
≡ k0 × 12 + ikiσ

i.

where na is the unitary vector pointing in the same direction as αa. One can see that the general element of the
group is a linear combination of the identity and of the Pauli matrices. The coefficients of the linear combination
are not independent since they must respect the determinant constraint:

1 = det

[
k0 + ik3 ik1 + k2
ik1 − k2 k0 − ik3

]
= k20 + k21 + k22 + k23.

The above expression is the equation that defines the embedding of a 3-sphere into R4. This parametrization
shows that the group SU(2), thought of as a manifold, is equivalent to S3, which is a connected simply connected
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manifold.
Coming back to the first exercise one should recall that (the defining representation of) the group SO(3) coincides
with the adjoint representation of SU(2). This representation is not injective because it associates two distinct
elements of SU(2) (U and −U) to the same element of SO(3) (we say that SU(2) is the double covering of SO(3)).
This means that in order to visualize SO(3) as a manifold one can think about a sphere where we identify a point

with the opposite one: (α0, α1, α2, α3) ∼ −(α0, α1, α2, α3). The manifold obtained is usually denoted as S3

Z2
. This

manifold is locally equivalent to the sphere, in particular they have the same tangent space, and this reflects the
fact that the Algebras of SO(3) and SU(2) are the same. However the identification of opposite points has a
crucial global consequence: this manifold is not simply connected (recall that a connected space is said simply
connected if any closed curve can be continuously shrunk to a point). To see this, imagine a curve starting at the
North Pole and ending at the South Pole. Since the starting and ending points are identified this curve is close.
The considered curve however cannot be shrunk to a point without opening it, because as soon as we move one of
the Poles the curve stops to be closed. To summarize the relation between the two groups is

SO(3) =
SU(2)

Z2
.

For compliteness we define the group Z2, which is the pair {−1, 1} together with the usual multiplication.

Exercise 4

• Each element of the representation can be put in the following block triangular form(
A(N−m)×(N−m) B(N−m)×m

0m×(N−m) Cm×m

)
. (1)

Since the matrix is unitary its rows are an orthonormal basis for the vector space over which the representation
act. In this notation the invariant subspace of the representation is the set of vectors which are zero in their
last m rows. Notice also that the last m row-vectors defined by the matrix C are an orthonormal basis
of the orthogonal complement of the invariant subspace of the representation. In particular the N − m
m-dimensional vectors define by B are orthogonal to each element of this basis, hence they vanish and
B = 0.

• Showing that the direct sum is a representation is trivial. Write

D =

(
D1 0
0 D2

)
A =

(
A11 A12

A21 A22

)
. (2)

For hypothesis the two matrices

AD =

(
A11D1 A12D2

A21D1 A22D2

)
, DA =

(
D1A11 D1A12

D2A21 D2A22

)
. (3)

are equal. Given that D1 and D2 are inequivalent, the equality of the off-diagonal elements A12D2 = D1A12

and A21D1 = D2A21 imply, by the second Shur’s lemma, A12 = A21 = 0. Given that D1 and D2 are
irreducible, the equality of the diagonal elements A11D1 = D1A11, A22D2 = D2A22 imply, by the first Shur’s
lemma, that A11 = λ1I and A22 = λ2I.
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