Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.
Journal Articles
2021
Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion
Cell Reports Physical Science. 2021-09-22. Vol. 2, num. 9, p. 100567. DOI : 10.1016/j.xcrp.2021.100567.Lignin First: Confirming the Role of the Metal Catalyst in Reductive Fractionation
Jacs Au. 2021-06-28. Vol. 1, num. 6, p. 729-733. DOI : 10.1021/jacsau.1c00018.2020
A TiO2/Nb2O5 center dot nH(2)O heterojunction catalyst for conversion of glucose into 5-hydroxymethylfurfural in water
Catalysis Science & Technology. 2020-12-07. Vol. 10, num. 23, p. 7857-7864. DOI : 10.1039/d0cy01601b.Selective hydrogenation of lignin-derived compounds under mild conditions
Green Chemistry. 2020-03-27. Vol. 22, num. 10, p. 3069-3073. DOI : 10.1039/D0GC00121J.2019
A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
European Journal Of Inorganic Chemistry. 2019-05-15. num. 18, p. 2381-2387. DOI : 10.1002/ejic.201900344.2018
Mechanistic Study of the N-Formylation of Amines with Carbon Dioxide and Hydrosilanes
ACS Catalysis. 2018-11-01. Vol. 8, num. 11, p. 10619-10630. DOI : 10.1021/acscatal.8b03274.Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid
CHEMSUSCHEM. 2018. Vol. 11, num. 13, p. 2077-2082. DOI : 10.1002/cssc.201800408.Homogeneous Catalytic Formic Acid Dehydrogenation in Aqueous Solution using Ruthenium Arene Phosphine Catalysts
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE. 2018. Vol. 644, num. 14, p. 740-744. DOI : 10.1002/zaac.201800107.Intricacies of Cation-Anion Combinations in Imidazolium Salt-Catalyzed Cycloaddition of CO2 Into Epoxides
ACS Catalysis. 2018. Vol. 8, num. 3, p. 2589-2594. DOI : 10.1021/acscatal.7b04389.Heterogeneous Catalytic Reactor for Hydrogen Production from Formic Acid and Its Use in Polymer Electrolyte Fuel Cells
ACS Sustainable Chemistry & Engineering. 2018. Vol. 6, num. 5, p. 6635-6643. DOI : 10.1021/acssuschemeng.8b00423.Additive free, room temperature direct homogeneous catalytic carbon dioxide hydrogenation in aqueous solution using an iron(II) phosphine catalyst
Journal of Catalysis. 2018. Vol. 362, p. 78-84. DOI : 10.1016/j.jcat.2018.03.030.Towards a frustrated Lewis pair-ionic liquid system
Inorganica Chimica Acta. 2018. Vol. 470, p. 270-274. DOI : 10.1016/j.ica.2017.07.045.Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol
Coordination Chemistry Reviews. 2018. Vol. 373, p. 317-332. DOI : 10.1016/j.ccr.2017.11.021.2017
Dehydrogenation of Formic Acid over a Homogeneous Ru-TPPTS Catalyst: Unwanted CO Production and Its Successful Removal by PROX
Catalysts. 2017. Vol. 7, num. 11, p. 348. DOI : 10.3390/catal7110348.Versatile palladium-catalyzed double carbonylation of aryl bromides
Chemical Communications. 2017. Vol. 53, p. 12422-12425. DOI : 10.1039/C7CC07412C.An efficient Pt nanoparticle–ionic liquid system for the hydrodeoxygenation of bio-derived phenols under mild conditions
Green Chemistry. 2017. Vol. 19, num. 22, p. 5435-5441. DOI : 10.1039/C7GC01870C.Delineating the Mechanism of Ionic Liquids in the Synthesis of Quinazoline-2,4(1H,3H)-dione from 2-Aminobenzonitrile and CO2
Angewandte Chemie-International Edition. 2017. Vol. 56, num. 35, p. 10559-10563. DOI : 10.1002/anie.201705438.Formic Acid as a Hydrogen Carrier for Fuel Cells Toward a Sustainable Energy System
Inorganic Reaction Mechanisms. 2017. Vol. 70, p. 395-427. DOI : 10.1016/bs.adioch.2017.04.002.trans-Mutation at Gold(III): A Mechanistic Study of a Catalytic Acetylene Functionalization via a Double Insertion Pathway
ACS Catalysis. 2017. Vol. 7, p. 5023-5034. DOI : 10.1021/acscatal.7b01364.Aqueous phase homogeneous formic acid disproportionation into methanol
Green Chemistry. 2017. Vol. 19, num. 10, p. 2371-2378. DOI : 10.1039/C6GC03359H.CO2 as hydrogen vector – Transition metal diamine catalysts for selective HCOOH dehydrogenation
Dalton Transactions. 2017. Vol. 46, num. 5, p. 1670-1676. DOI : 10.1039/C6DT04638J.Investigation of Hydrogenation of Formic Acid to Methanol using H2 or Formic Acid as a Hydrogen Source
ACS Catalysis. 2017. Vol. 7, p. 1123-1131. DOI : 10.1021/acscatal.6b03194.2016
Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature
Chemistry – A European Journal. 2016. Vol. 22, num. 44, p. 15605-15608. DOI : 10.1002/chem.201603407.Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts
Journal of Catalysis. 2016. Vol. 343, p. 62-67. DOI : 10.1016/j.jcat.2015.11.012.A simple catalyst for aqueous phase Suzuki reactions based on palladium nanoparticles immobilized on an ionic polymer
Science China-Chemistry. 2016. Vol. 59, num. 4, p. 482-486. DOI : 10.1007/s11426-015-5542-3.Calorimetric and Spectroscopic Studies on the Solvation Energetics for H2 Storage in the CO2/HCOOH System
Phys. Chem. Chem. Phys.. 2016. Vol. 18, p. 10764-10773. DOI : 10.1039/C5CP06996C.2015
Hydrogen Storage in the Carbon Dioxide – Formic Acid Cycle
Chimia. 2015. Vol. 69, num. 12, p. 746-752. DOI : 10.2533/chimia.2015.746.Editorial
Chimia. 2015. Vol. 69, num. 6, p. 313-313.High-pressure NMR spectroscopy: An in situ tool to study tin-catalyzed synthesis of organic carbonates from carbon dioxide and alcohols. Part 2 [1]
Journal of Organometallic Chemistry. 2015. Vol. 796, p. 53-58. DOI : 10.1016/j.jorganchem.2015.02.006.A Viable Hydrogen Storage and Release System Based on Cesium Formate and Bicarbonate Salts: Mechanistic Insights into the Hydrogen Release Step
ChemCatChem. 2015. Vol. 7, num. 15, p. 2332-2339. DOI : 10.1002/cctc.201500359.Homogenous catalytic hydrogenation of bicarbonate with water soluble aryl phosphine ligands
Inorganica Chimica Acta. 2015. Vol. 431, p. 132-138. DOI : 10.1016/j.ica.2014.10.034.Rh(I)-Catalyzed Hydroamidation of Olefins via Selective Activation of N–H Bonds in Aliphatic Amines
Journal of the American Chemical Society. 2015. Vol. 137, num. 18, p. 6053-6058. DOI : 10.1021/jacs.5b02218.2014
Formic Acid Dehydrogenation Catalysed by Tris(TPPTS) Ruthenium Species: Mechanism of the Initial “Fast” Cycle
Chemcatchem. 2014. Vol. 6, num. 11, p. 3146-3152. DOI : 10.1002/cctc.201402410.Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source
Angewandte Chemie-International Edition. 2014. Vol. 53, num. 47, p. 12876-12879. DOI : 10.1002/anie.201407689.Base-Free Non-Noble-Metal-Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights
Chemistry – A European Journal. 2014. Vol. 20, num. 42, p. 13589-13602. DOI : 10.1002/chem.201403602.Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution
ACS Catalysis. 2014. Vol. 4, num. 9, p. 3002-3012. DOI : 10.1021/cs500655x.A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions
Journal Of Catalysis. 2014. Vol. 315, p. 67-74. DOI : 10.1016/j.jcat.2014.04.011.Enhanced Conversion of Carbohydrates to the Platform Chemical 5-Hydroxymethylfurfural Using Designer Ionic Liquids
Chemsuschem. 2014. Vol. 7, num. 6, p. 1647-1654. DOI : 10.1002/cssc.201301368.Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
Nature Communications. 2014. Vol. 5, p. 4017. DOI : 10.1038/ncomms5017.Electrostatic and Non-covalent Interactions in Dicationic Imidazolium-Sulfonium Salts with Mixed Anions
Chemistry-A European Journal. 2014. Vol. 20, num. 15, p. 4273-4283. DOI : 10.1002/chem.201303520.Chemical Equilibria in Formic Acid/Amine-CO2 Cycles under Isochoric Conditions using a Ruthenium(II) 1,2-Bis(diphenylphosphino)ethane Catalyst
ChemCatChem. 2014. Vol. 6, num. 1, p. 96-99. DOI : 10.1002/cctc.201300740.Amide bond formation via C(sp(3))-H bond functionalization and CO insertion
Chemical Communications. 2014. Vol. 50, num. 3, p. 341-343. DOI : 10.1039/c3cc47015f.2013
Heterogeneous Silica-Supported Ruthenium Phosphine Catalysts for Selective Formic Acid Decomposition
ChemCatChem. 2013. Vol. 5, p. 3124-3130. DOI : 10.1002/cctc.201300246.Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids
Green Chemistry. 2013. Vol. 15, num. 6, p. 1584-1589. DOI : 10.1039/c3gc37085b.How Strong Is Hydrogen Bonding in Ionic Liquids? Combined X-ray Crystallographic, Infrared/Raman Spectroscopic, and Density Functional Theory Study
Journal Of Physical Chemistry B. 2013. Vol. 117, num. 30, p. 9094-9105. DOI : 10.1021/jp405255w.Hydrogen storage: beyond conventional methods
Chemical Communications. 2013. Vol. 49, p. 8735-8751. DOI : 10.1039/c3cc43836h.Ruthenium(II)-Catalyzed Hydrogen Generation from Formic Acid using Cationic, Ammoniomethyl-Substituted Triarylphosphine Ligands
ChemCatChem. 2013. Vol. 5, num. 5, p. 1126-1132. DOI : 10.1002/cctc.201200782.Development of Palladium Surface-Enriched Heteronuclear Au-Pd Nanoparticle Dehalogenation Catalysts in an Ionic Liquid
Chemistry – A European Journal. 2013. Vol. 19, num. 4, p. 1227-1234. DOI : 10.1002/chem.201203605.Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO2 hydrogenation in pressurised aqueous solutions using 1H and 13C NMR spectroscopy
Dalton Transactions. 2013. Vol. 42, p. 4353-4356. DOI : 10.1039/c3dt00081h.Classical and non-classical phosphine-Ru(ii)-hydrides in aqueous solutions: many, various, and useful
Dalton Transactions. 2013. Vol. 42, num. 2, p. 521. DOI : 10.1039/c2dt31793a.2012
Towards the development of a hydrogen battery
Energy & Environmental Science. 2012. Vol. 5, num. 10, p. 8907. DOI : 10.1039/c2ee22043a.Formic acid as a hydrogen source – recent developments and future trends
Energy & Environmental Science. 2012. Vol. 5, num. 8, p. 8171. DOI : 10.1039/c2ee21928j.Tuning the Chemoselectivity of Rh Nanoparticle Catalysts by Site-Selective Poisoning with Phosphine Ligands: The Hydrogenation of Functionalized Aromatic Compounds
Acs Catalysis. 2012. Vol. 2, p. 201-207. DOI : 10.1021/cs200575r.2011
Hydrogen Storage and Delivery: The Carbon Dioxide – Formic Acid Couple
CHIMIA International Journal for Chemistry. 2011. Vol. 65, num. 9, p. 663-666. DOI : 10.2533/chimia.2011.663.A Charge/Discharge Device for Chemical Hydrogen Storage and Generation
Angewandte Chemie International Edition. 2011. Vol. 50, num. 44, p. 10433-10435. DOI : 10.1002/anie.201104951.Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
Science. 2011. Vol. 333, num. 6050, p. 1733-1736. DOI : 10.1126/science.1206613.Synthesis of Gold Nanoparticle Catalysts Based on a New Water-Soluble Ionic Polymer
Inorganic Chemistry. 2011. Vol. 50, num. 17, p. 8038-8045. DOI : 10.1021/ic200334m.Di-n-butyltin(IV)-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol: An in situ high pressure 119Sn{1H} NMR spectroscopic study
Journal of Organometallic Chemistry. 2011. Vol. 696, num. 9, p. 1904-1909. DOI : 10.1016/j.jorganchem.2011.02.010.Striking Influence of the Catalyst Support and Its Acid–Base Properties: New Insight into the Growth Mechanism of Carbon Nanotubes
ACS Nano. 2011. Vol. 5, num. 5, p. 3428-3437. DOI : 10.1021/nn200012z.Hydrogen Storage in Formic Acid – Amine Adducts
CHIMIA International Journal for Chemistry. 2011. Vol. 65, num. 4, p. 214-218. DOI : 10.2533/chimia.2011.214.Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne
Journal of Catalysis. 2011. Vol. 279, num. 1, p. 66-74. DOI : 10.1016/j.jcat.2011.01.003.2010
A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides
Angewandte Chemie-International Edition. 2010. Vol. 49, p. 9777-9780. DOI : 10.1002/anie.201004263.Ruthenium-Catalyzed Hydrogenation of Bicarbonate in Water
ChemSusChem. 2010. Vol. 3, num. 9, p. 1048-1050. DOI : 10.1002/cssc.201000151.Crystallisation of inorganic salts containing 18-crown-6 from ionic liquids
Inorganica Chimica Acta. 2010. Vol. 363, num. 3, p. 504-508. DOI : 10.1016/j.ica.2009.06.020.Influence of water-soluble sulfonated phosphine ligands on ruthenium catalyzed generation of hydrogen from formic acid
Journal of Coordination Chemistry. 2010. Vol. 63, num. 14-16, p. 2685-2694. DOI : 10.1080/00958972.2010.492470.Synthesis of Room-Temperature Ionic Liquids with the Weakly Coordinating [Al(ORF)4]- Anion (RF=C(H)(CF3)2) and the Determination of Their Principal Physical Properties
Chemistry–A European Journal. 2010. Vol. 16, num. 44, p. 13139-13154. DOI : 10.1002/chem.201000982.2009
Influence of ion pairing on styrene hydrogenation using a cationic η6-arene β-diketiminato-ruthenium complex
Organometallics. 2009. Vol. 28, num. 22, p. 6432-6441. DOI : 10.1021/om900634s.Hydrogen storage and delivery: immobilization of a highly active homogeneous catalyst for the decomposition of formic acid to hydrogen and carbon dioxide
REACTION KINETICS AND CATALYSIS LETTERS. 2009. Vol. 98, num. 2, p. 205-213. DOI : 10.1007/s11144-009-0096-z.Chelating NHC Ruthenium(II) Complexes as Robust Homogeneous Hydrogenation Catalysts
Organometallics. 2009. Vol. 28, num. 17, p. 5112-5121. DOI : 10.1021/om900356w.Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study
CHEMISTRY – A EUROPEAN JOURNAL. 2009. Vol. 15, p. 3752-3760. DOI : 10.1002/chem.200801824.2008
Determination of the viscosity of the ionic liquids [bmim][PF6] and [bmim][TF2N] under high CO2 gas pressure using sapphire NMR tubes
ZEITSCHRIFT FUER NATURFORSCHUNG, B; CHEMICAL SCIENCES. 2008. Vol. 63, num. 6, p. 681-684. DOI : 10.1515/znb-2008-0614.Biphasic Hydrogenation over PVP Stabilized Rh Nanoparticles in Hydroxyl Functionalized Ionic Liquids
Inorganic Chemistry. 2008. Vol. 47, num. 17, p. 7444-7446. DOI : 10.1021/ic8009145.Pd Nanoparticles in a Supported Ionic Liquid Phase: Highly Stable Catalysts for Selective Acetylene Hydrogenation under Continuous-Flow Conditions
Journal of Physical Chemistry C. 2008. Vol. 112, num. 46, p. 17814-17819. DOI : 10.1021/jp806603f.Hydrocarboxylation of Terminal Alkenes in Supercritical Carbon Dioxide
European Journal of Inorganic Chemistry. 2008. num. 22, p. 3524-3531. DOI : 10.1002/ejic.200800282.A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst
ANGEWANDTE CHEMIE, INTERNATIONAL EDITION. 2008. Vol. 47, num. 21, p. 3966-8. DOI : 10.1002/anie.200800320.(Pentamethylcyclopentadienyl)iridium-PTA (PTA = 1,3,5-Triaza-7-phosphaadamantane) Complexes and Their Application in Catalytic Water Phase Carbon Dioxide Hydrogenation
European Journal of Inorganic Chemistry. 2008. num. 4, p. 620-627. DOI : 10.1002/ejic.200700792.2007
Ruthenium nanoparticles intercalated in hectorite: A reusable hydrogenation catalyst for benzene and toluene
Journal of cluster science. 2007. Vol. 18, p. 87-95. DOI : 10.1007/s10876-006-0084-7.Influence of the Interaction between Hydrogen Sulfide and Ionic Liquids on Solubility: Experimental and Theoretical Investigation
JOURNAL OF PHYSICAL CHEMISTRY B. 2007. Vol. 111, num. 45, p. 13014-13019. DOI : 10.1021/jp076129d.Aqueous phase carbon dioxide and bicarbonate hydrogenation catalyzed by cyclopentadienyl ruthenium complexes
APPLIED ORGANOMETALLIC CHEMISTRY. 2007. Vol. 21, num. 11, p. 947-951. DOI : 10.1002/aoc.1317.Structured fiber supports for ionic liquid-phase catalysis used in gas-phase continuous hydrogenation
JOURNAL OF CATALYSIS. 2007. Vol. 247, num. 2, p. 269-276. DOI : 10.1016/j.jcat.2007.02.012.Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation
Chemistry-A European Journal. 2007. Vol. 13, num. 14, p. 3886-3899. DOI : 10.1002/chem.200601339.In situ NMR characterisation of an intermediate in the catalytic hydrogenation of CO2 and HCO3– in aqueous solution
INORGANIC CHEMISTRY COMMUNICATIONS. 2007. Vol. 10, num. 5, p. 558-562. DOI : 10.1016/j.inoche.2007.01.020.Facile, thermo-reversible cycloaddition of small molecules to a ruthenium(II) arene-diketiminate
Organometallics. 2007. Vol. 26, num. 5, p. 1120-1122. DOI : 10.1021/om070017r.High-pressure effects on the Diels-Alder reaction in room temperature ionic liquids
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY. 2007. Vol. 20, num. 2, p. 109-114. DOI : 10.1002/poc.1131.Heterogeneous dehalogenation of arylhalides in the presence of ionic liquids
APPLIED ORGANOMETALLIC CHEMISTRY. 2007. Vol. 21, num. 3, p. 156-160. DOI : 10.1002/aoc.1194.Mechanistic Studies on the Formation of eta(2)-Diphosphine (eta(6)-p-cymene)ruthenium(II) Compounds
Organometallics. 2007. Vol. 26, num. 3, p. 586-593. DOI : 10.1021/om060752n.2006
Kinetic studies on the first dihydrogen aquacomplex, [Ru(H2)(H2O)5]2+: Formation under H2 pressure and catalytic H/D isotope exchange in water
Inorganica Chimica Acta. 2006. Vol. 359, num. 6, p. 1795-1806. DOI : 10.1016/j.ica.2005.06.056.Cooperative effect between iridium and platinum in the carbonylation of methanol to acetic acid
TOPICS IN CATALYSIS. 2006. Vol. 40, num. 1-4, p. 83-90. DOI : 10.1007/s11244-006-0110-x.Promoting Role of [PtI2(CO)]2 in the Iridium-Catalyzed Methanol Carbonylation to Acetic Acid and Its Interaction with Involved Iridium Species
Organometallics. 2006. Vol. 25, num. 25, p. 5894-5905. DOI : 10.1021/om060282x.In Vitro Evaluation of Rhodium and Osmium RAPTA Analogues: The Case for Organometallic Anticancer Drugs Not Based on Ruthenium
Organometallics. 2006. Vol. 25, num. 17, p. 4090-4096. DOI : 10.1021/om060394o.Regioselectivity in aqueous palladium catalysed hydroxycarbonylation of styrene: a catalytic and mechanistic study
Dalton Transactions. 2006. num. 32, p. 3934-3940. DOI : 10.1039/b607331j.Biphasic Hydrosilylation in Ionic Liquids: A Process Set for Industrial Implementation
Journal of the American Chemical Society. 2006. Vol. 128, num. 30, p. 9773-9780. DOI : 10.1021/ja0612293.Analysis of the Synergistic Effect of Carbonylplatinum Complexes on the Iridium-Catalysed Carbonylation of Methanol to Acetic Acid
European Journal of Inorganic Chemistry. 2006. num. 6, p. 1121-1126. DOI : 10.1002/ejic.200500931.Synthesis of Imidazolium-Tethered Ruthenium(II)-Arene Complexes and Their Application in Biphasic Catalysis
Organometallics. 2006. Vol. 25, num. 3, p. 733-742. DOI : 10.1021/om050849u.2005
The water-soluble cluster cation [H3Ru3(C6H6)(C6Me6)(2)(O)](+): Improved synthesis, aerobic oxidation, electrochemical properties and ligand exchange studies
POLYHEDRON. 2005. Vol. 24, num. 15, p. 1961-1967. DOI : 10.1016/j.poly.2005.06.006.Coordination chemistry of a new rigid, hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand
Inorganic Chemistry. 2005. Vol. 44, num. 22, p. 8145-8155. DOI : 10.1021/ic0513383.Hydride route for the palladium-catalysed cyclocarbonylation of monoterpenes
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY. 2005. num. 20, p. 4215-4225. DOI : 10.1002/ejic.200500136.In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes
JOURNAL OF MEDICINAL CHEMISTRY. 2005. Vol. 48, num. 12, p. 4161-4171. DOI : 10.1021/jm050015d.Supramolecular triruthenium cluster-based benzene hydrogenation catalysis: Fact or fiction?
Organometallics. 2005. Vol. 24, num. 8, p. 1819-1831. DOI : 10.1021/om048976y.Rationalisation of solvent effects in the diels-alder reaction between cyclopentadiene and methyl acrylate in room temperature ionic liquids
ADVANCED SYNTHESIS & CATALYSIS. 2005. Vol. 347, num. 2-3, p. 266-274. DOI : 10.1002/adsc.200404301.Experimental and theoretical study of intramolecular exchange in Ir2Rh2(CO)(12) and Ir-4(CO)(11)(mu-SO2)
Dalton Transactions. 2005. num. 2, p. 310-314. DOI : 10.1039/b415147j.Allyl-functionalised ionic liquids: Synthesis, characterisation, and reactivity
HELVETICA CHIMICA ACTA. 2005. Vol. 88, num. 3, p. 665-675. DOI : 10.1002/hlca.200590046.Synthesis and characterization of new water-soluble hydrides of Ru-II: A step towards dinitrogen activation?
HELVETICA CHIMICA ACTA. 2005. Vol. 88, num. 3, p. 557-565. DOI : 10.1002/hlca.200590038.2004
Cluster and polynuclear compounds. Mixed-metal clusters of iridium with ruthenium and osmium
Inorganic Syntheses. 2004. Vol. 34, p. 206-210.In situ high pressure FT-IR spectroscopy on alkene hydroformylation catalysed by RhH(CO)(PPh3)(3) and Co-2(CO)(8)
INORGANICA CHIMICA ACTA. 2004. Vol. 357, num. 15, p. 4537-4543. DOI : 10.1016/j.ica.2004.07.021.On the catalytic activity of cluster anions in styrene hydrogenation: considerable enhancements in ionic liquids compared to molecular solvents
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL. 2004. Vol. 214, num. 1, p. 19-25. DOI : 10.1016/j.molcata.2003.09.037.Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation
Chemical Communications. 2004. num. 9, p. 1070-1071. DOI : 10.1039/B401537A.Supramolecular cluster catalysis: facts and problems
Journal of Organometallic Chemistry. 2004. Vol. 689, num. 8, p. 1362-1369. DOI : 10.1016/j.jorganchem.2003.12.032.Water-soluble (eta(6)-arene)ruthenium(II)-phosphine complexes and their catalytic activity in the hydrogenation of bicarbonate in aqueous solution
JOURNAL OF ORGANOMETALLIC CHEMISTRY. 2004. Vol. 689, num. 6, p. 1036-1045. DOI : 10.1016/j.jorganchem.2003.11.036.Reactions of [Ru(H2O)(6)](2+) with water-soluble tertiary phosphines
Dalton Transactions. 2004. num. 15, p. 2336-2340. DOI : 10.1039/b405878j.Dual-functionalised ionic liquids: synthesis and characterisation of imidazolium salts with a nitrile-functionalised anion
Chemical Communications. 2004. num. 21, p. 2500-2501. DOI : 10.1039/B408938C.2003
Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes
APPLIED CATALYSIS A-GENERAL. 2003. Vol. 255, num. 1, p. 59-67. DOI : 10.1016/S0926-860X(03)00644-6.Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation
Chemical Communications. 2003. num. 19, p. 2418-2419. DOI : 10.1039/b308309h.Water-soluble analogs of [RuCl3(NO)(PPh3)(2)] and their catalytic activity in the hydrogenation of carbon dioxide and bicarbonate in aqueous solution
Journal of Molecular Catalysis A: Chemical. 2003. Vol. 204, p. 143-148. DOI : 10.1016/S1381-1169(03)00293-0.Carbon dioxide reduction in biphasic aqueous-ionic liquid systems by pressurized hydrogen
HIGH PRESSURE RESEARCH. 2003. Vol. 23, num. 3, p. 239-242. DOI : 10.1080/0895795032000102405.Rhodium-sulfonated diphosphine catalysts in aqueous hydroformylation of vinyl arenes: high-pressure NMR and IR studies
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL. 2003. Vol. 195, num. 1-2, p. 113-124. DOI : 10.1016/S1381-1169(02)00544-7.A comparison of ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids
ADVANCED SYNTHESIS & CATALYSIS. 2003. Vol. 345, num. 1-2, p. 216-221. DOI : 10.1002/adsc.200390015.Minor modifications to the ligands surrounding a ruthenium complex lead to major differences in the way in which they catalyse the hydrogenation of arenes
ADVANCED SYNTHESIS & CATALYSIS. 2003. Vol. 345, num. 1-2, p. 211-215. DOI : 10.1002/adsc.200390014.Dramatic pressure effects on the selectivity of the aqueous organic biphasic hydrogenation of trans-cinnamaldehyde catalvzed by water-soluble Ru(II)-tertiary phosphane complexes
ADVANCED SYNTHESIS & CATALYSIS. 2003. Vol. 345, num. 1-2, p. 172-174. DOI : 10.1002/adsc.200390006.Crystal structure and fluxional behaviour in solution of [Rh-4(CO)(6)(mu-Me2PCH2PMe2)(3)]
Dalton Transactions. 2003. num. 5, p. 968-972. DOI : 10.1039/b210986g.Aqueous organometallic catalysis. Isotope exchange reactions in H-2-D2O and D-2-H2O systems catalyzed by water-soluble Rh- and Ru-phosphine complexes
GREEN CHEMISTRY. 2003. Vol. 5, num. 2, p. 213-217. DOI : 10.1039/b300156n.2002
Mechanistic in situ high-pressure NMR studies of benzene hydrogenation by supramolecular cluster catalysis with [(eta(6)-C6H6)(eta(6)-C6Me6)(2)Ru-3(mu(3)-O)(mu(2)-OH)(mu(2)-H)(2)][BF4]
ADVANCED SYNTHESIS & CATALYSIS. 2002. Vol. 344, num. 10, p. 1073-1077. DOI : 10.1002/1615-4169(200212)344:10<1073::AID-ADSC1073>3.0.CO;2-J.Reaction of triangulo-clusters [Pt3(μ-CO)3(PR3)3] with hexafluorobutyne. The X-ray crystal structures of [Pt2(CO)2(PR3)2(μ-η2:η2-CF3C[triple bond, length as m-dash]CCF3)] (PR3 = PPh3 or PCy3) and [Pt2(CO)2(PBzPh2)(μ-η1:η1-CF3C[triple bond, length as m-dash]CCF3)2]
Journal of the Chemical Society, Dalton Transactions. 2002. num. 18, p. 3565-3570. DOI : 10.1039/B203075F.Intramolecular dynamics of [Rh-4(CO)(6)(mu-PPh2)(4)] in solution
Journal of the Chemical Society, Dalton Transactions. 2002. num. 24, p. 4577-4581. DOI : 10.1039/B208318C.2001
The reaction of alkynes with triangulo-clusters [Pt3(m-CO)3(PR3)3]
Journal of the Chemical Society, Dalton Transactions. 2001. num. 19, p. 2858-2863. DOI : 10.1039/b103306a.The reaction of alkenes with triangulo-clusters [Pt3(m-CO)3(PR3)3]
Journal of Cluster Science. 2001. Vol. 12, num. 1, p. 99-112. DOI : 10.1023/A:1016670928641.Aspects of aqueous ruthenium(II) chemistry
Helvetica Chimica Acta. 2001. Vol. 84, num. 10, p. 2854-2867. DOI : 10.1002/1522-2675(20011017)84:10<2854::AID-HLCA2854>3.0.CO;2-E.(para-Diphenylphosphino)benzenesulfonic acid and its ruthenium(II) complexes: an old water soluble phosphine ligand in a new perspective
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE. 2001. Vol. 79, num. 5, p. 635-641. DOI : 10.1139/v01-077.The effect of pH on the reactions of catalytically important Rh-I complexes in aqueous solution: Reaction of [RhCl(tppms)(3)] and trans-[RhCl(CO)(tppms)(2)] with hydrogen (TPPMS = mono-sulfonated triphenylphosphine)
Chemistry-A European Journal. 2001. Vol. 7, num. 1, p. 193-199. DOI : 10.1002/1521-3765(20010105)7:1<193::AID-CHEM193>3.0.CO;2-Q.2000
Synthesis and 13C NMR study of the triangulo-clusters [Pt3(m-CO)3-n(m-SO2)n(PR3)3] (n = 0-3)
Inorganica Chimica Acta. 2000. Vol. 303, num. 1, p. 94-99. DOI : 10.1016/S0020-1693(99)00523-X.Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under mild conditions with water soluble rhodium(I)- and ruthenium(II)-phosphine catalysts
Applied Organometallic Chemistry. 2000. Vol. 14, num. 12, p. 857-859. DOI : 10.1002/1099-0739(200012)14:12<857::AID-AOC86>3.0.CO;2-9.Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution
Inorganic Chemistry. 2000. Vol. 39, num. 22, p. 5083-5088. DOI : 10.1021/ic000200b.H/D exchange between H-2-D2O and D-2-H2O catalyzed by water soluble tertiary phosphine complexes of ruthenium(II) and rhodium(I)
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE C-CHIMIE. 2000. Vol. 3, num. 7, p. 601-605. DOI : 10.1016/S1387-1609(00)01142-7.Towards an easy carbon dioxide reduction in aqueous solution
HIGH PRESSURE RESEARCH. 2000. Vol. 18, num. 1-6, p. 251-255. DOI : 10.1080/08957950008200976.1999
Intramolecular site exchanges in [Ir3Ru(CO)12]
ACH – Models in Chemistry. 1999. Vol. 136, num. 3, p. 317-324.1998
Spectroscopic studies of the chemical speciation in concentrated alkaline aluminate solutions
Journal of the Chemical Society : Dalton Transactions : Inorganic Chemistry. 1998. num. 18, p. 3007-3012. DOI : 10.1039/A805271I.A new variable temperature and pressure infrared cell to study liquid and liquid-gas systems
Analytica Chimica Acta. 1998. Vol. 359, num. 3, p. 275-281. DOI : 10.1016/S0003-2670(97)00696-X.Intramolecular dynamics of tetranuclear iridium carbonyl cluster compounds. Part 6. Derivatives with bidentate ligands. Crystal structures of tetrahedro-decacarbonyl{m-[1,1-bis(methylthio-kS)ethane]}tetrairidium ([Ir4(CO)10-(m2-(MeS)2CHMe)]), tetrahedro-tri-m-carbonylheptacarbonyl{m-{ethylidenebis-[diphenylphosphine]k-P: kP’}}tetrairidium ([Ir4(CO)10(m2-(Ph2P)2CHMe)]), and tetrahedro-Tri-m-carbonylheptacarbonyl{m-{propane-1,3-diylbis[diphenylphosphine]-kP: kP’}}tetrairidium ([Ir4(CO)10(m2-Ph2P(CH2)3PPh2)])
Helvetica Chimica Acta. 1998. Vol. 81, num. 4, p. 781-791. DOI : 10.1002/hlca.19980810328.Experimental and Theoretical Studies of the Site Exchanges in Rh4(CO)12 and IrRh3(CO)12
Inorganic Chemistry. 1998. Vol. 37, num. 21, p. 5634-5640. DOI : 10.1021/ic9804162.Amphiphilic organoruthenium oxomolybdenum and oxovanadium clusters
Polyhedron. 1998. Vol. 17, num. 17, p. 2817-2827. DOI : 10.1016/S0277-5387(97)00529-9.1997
205Tl-NMR and UV-visible spectroscopic determination of the formation constants of aqueous thallium(I) hydroxo-complexes
Journal of Solution Chemistry. 1997. Vol. 26, num. 5, p. 419-431. DOI : 10.1007/BF02767599.Structure and molecular dynamics of Ru2(CO)6(m-PCy2)2: an unusual case of cyclohexyl rearrangement
Journal of Organometallic Chemistry. 1997. Vol. 527, num. 1-2, p. 167-172. DOI : 10.1016/S0022-328X(96)06636-3.Trans- and Cis-Water Reactivities in d6 Octahedral Ruthenium(II) Pentaaqua Complexes: Experimental and Density Functional Theory Studies
Inorganic Chemistry. 1997. Vol. 36, num. 26, p. 6009-6020. DOI : 10.1021/ic970783y.1996
Solution dynamics of cis-bis(diphenylphosphino)ethene substituted derivatives of Ir4(CO)12
Inorganica Chimica Acta. 1996. Vol. 247, num. 1, p. 65-70. DOI : 10.1016/0020-1693(95)04943-6.Multiple Bonds between Main-Group Elements and Transition Metals. 152. Hydrolysis and Polymerization-Precipitation of Methyltrioxorhenium in Aqueous Solution
Organometallics. 1996. Vol. 15, num. 2, p. 848-51. DOI : 10.1021/om9500937.High-Pressure Stopped-Flow Spectrometer for Kinetic Studies of Fast Reactions by Absorbance and Fluorescence Detection
Analytical Chemistry. 1996. Vol. 68, num. 17, p. 3045-3049. DOI : 10.1021/ac960382k.1995
Coordination equilibria and water exchange kinetics of lanthanide(III) propylenediaminetetraacetates and other magnetic resonance imaging related complexes
Inorganica Chimica Acta. 1995. Vol. 235, num. 1-2, p. 311-26. DOI : 10.1016/0020-1693(95)90073-F.1994
Variable-temperature and -pressure 31P-NMR study of the intramolecular PPh3 migration in the cluster compound [Ir2Rh2(CO)11PPh3]
Helvetica Chimica Acta. 1994. Vol. 77, num. 2, p. 547-53. DOI : 10.1002/hlca.19940770216.Synthesis of [Ir3Rh(CO)12] and fluxional behavior of some of its substituted derivatives
Helvetica Chimica Acta. 1994. Vol. 77, num. 7, p. 1869-85. DOI : 10.1002/hlca.19940770718.Mechanism of Aquation of Bicycloalkyl Substituted(Ethylenediamine)dichloroplatinum(II) Complexes: A Search for the Understanding of Their Differences in Antitumor Activity
Inorganic Chemistry. 1994. Vol. 33, num. 19, p. 4277-82. DOI : 10.1021/ic00097a014.Second-order globalization for the determination of activation parameters in kinetics
Analytica Chimica Acta. 1994. Vol. 298, num. 2, p. 193-201. DOI : 10.1016/0003-2670(94)00255-X.1993
Solution equilibria in trialkyl-phosphite derivative of [Ir4(CO)12]. Crystal structure of [Ir4(CO)11{P(OCH2)3CEt}]
Helvetica Chimica Acta. 1993. Vol. 76, num. 8, p. 2926-2935. DOI : 10.1002/hlca.19930760816.Intramolecular site exchange of carbonyl ligands in the cluster compounds nonacarbonyl{m3-[h3-(1,3,5-trithiane)]}triruthenium ([Ru3(CO)9{m3-(h3-C3H6S3)}]) and (tert-butyl isocyanide)octacarbonyl-{m3-[h3-(1,3,5-trithiane)]}triruthenium ([Ru3(t-BuNC)(CO)8{m3-(h3-C3H6S3)}])
Helvetica Chimica Acta. 1993. Vol. 76, num. 8, p. 2936-41. DOI : 10.1002/hlca.19930760817.Aqueous catalytic dimerization of ethylene: characterization of the ruthenium complex reaction intermediates [Ru(CH2:CH2)(H2O)5](tos)2 and [Ru(CH2:CH2)2(H2O)4](tos)2 (tos = toluene-p-sulfonate)
Journal of the Chemical Society, Chemical Communications. 1993. num. 2, p. 187-189. DOI : 10.1039/C39930000187.Monocomplex formation reactions of hexaaquaruthenium(II): a mechanistic study
Inorganic Chemistry. 1993. Vol. 32, num. 13, p. 2810-14. DOI : 10.1021/ic00065a005.1992
Monocomplex formation and dissociation of some first row divalent transition metal ions with 2-chloro-1,10-phenanthroline by the high-pressure stopped-flow technique
Inorganica Chimica Acta. 1992. Vol. 198-200, num. 1, p. 159-64. DOI : 10.1016/S0020-1693(00)92357-0.1991
Variable-pressure oxygen-17 NMR study of water exchange on hexaaquarhodium(III)
Magnetic Resonance in Chemistry. 1991. Vol. 29, num. Spec. Issue, p. S45-S51. DOI : 10.1002/mrc.1260291311.The binding of dinitrogen to ruthenium(II) in aqueous solution
Inorganica Chimica Acta. 1991. Vol. 189, num. 2, p. 131-3. DOI : 10.1016/S0020-1693(00)80178-4.Quantitative formation in water of [Ru(CO)(H2O)5]2+ from hexaaquaruthenium(II) and carbon monoxide
Helvetica Chimica Acta. 1991. Vol. 74, num. 6, p. 1236-8. DOI : 10.1002/hlca.19910740611.1989
Variable-pressure kinetic and equilibrium study of monocomplex formation of copper(II) and zinc(II) with 2-chloro-1,10-phenanthroline in aqueous solution
Inorganic Chemistry. 1989. Vol. 28, num. 15, p. 3024-8. DOI : 10.1021/ic00314a031.High-pressure NMR kinetics. Part 39. Variable pressure spectrophotometric equilibrium and lanthanum-139 NMR kinetic studies of lanthanum(III) ion complex formation with 2,6-dicarboxy-4-hydroxypyridine in aqueous solution
Inorganica Chimica Acta. 1989. Vol. 158, num. 1, p. 3-4. DOI : 10.1016/S0020-1693(00)84005-0.1988
The reaction volume for the equilibrium between the lanthanide(III) ennea- and octaaqua ions as a diagnostic aid for their water-exchange mechanisms
Helvetica Chimica Acta. 1988. Vol. 71, num. 8, p. 1971-1973. DOI : 10.1002/hlca.19880710815.High-pressure kinetic study of formation and dissociation of first- and second-row d10 divalent metal ion complexes with bipyridine in aqueous solution: a cation size dependent reaction mechanism
Inorganic Chemistry. 1988. Vol. 27, num. 7, p. 1148-52. DOI : 10.1021/ic00280a011.Lanthanum-139 NMR as a tool for kinetic studies
Magnetic Resonance in Chemistry. 1988. Vol. 26, num. 11, p. 1023-6. DOI : 10.1002/mrc.1260261116.Conference Papers
2018
Carbon dioxide to formic acid and to methanol: Homogeneous catalytic ways in aqueous solution at room temperatures
2018-08-19. 256th National Meeting and Exposition of the American-Chemical-Society (ACS) – Nanoscience, Nanotechnology and Beyond, Boston, MA, Aug 19-23, 2018.Reviews
2018
Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
Chemical Reviews. 2018. Vol. 118, num. 2, p. 372-433. DOI : 10.1021/acs.chemrev.7b00182.2014
Homogeneous Catalytic Dehydrogenation of Formic Acid: Progress Towards a Hydrogen-Based Economy
Journal Of The Brazilian Chemical Society. 2014. Vol. 25, num. 12, p. 2157-2163. DOI : 10.5935/0103-5053.20140235.Theses
2021
Propelling the hydrogen economy: from chemical storage and delivery to utilization in biomass conversion
Lausanne, EPFL, 2021.2018
High-pressure NMR spectroscopic and calorimetric studies on formic acid dehydrogenation and carbon dioxide hydrogenation
Lausanne, EPFL, 2018.Hydrogen storage in the carbon dioxide/formic acid system, using homogeneous iron(II)-phosphine catalysts in aqueous solution
Lausanne, EPFL, 2018.2016
Carbon dioxide for hydrogen storage via formic acid derivatives and methanol
Lausanne, EPFL, 2016.2015
Méthodes de production par ultrasons, de la théorie à l’application industrielle
Lausanne, EPFL, 2015.2014
Direct Carbon Dioxide Hydrogenation into Formic Acid in Acidic Media
Lausanne, EPFL, 2014.2012
Kinetics and Mechanism of Formic Acid Decomposition in Aqueous Solution using Ruthenium Pre-catalysts with Hydrophilic Phosphine Ligands
Lausanne, EPFL, 2012.2008
Homogeneous catalytic decomposition of formic acid for high pressure hydrogen generation
Lausanne, EPFL, 2008.Book Chapters
2010
Synthesis of chloride free ruthenium(II) hexaaqua tosylate, [Ru(H2O)6]tos2
Inorganic Syntheses; Hoboken, New Jersey: Wiley, 2010. p. 152-155.2005
High Pressure NMR Cells
Mechanisms in Homogeneous Catalysis: A Spectroscopic Approach; Weinheim: Wiley-VCH, 2005. p. 81-106.2004
Characterization of organometallic compounds in water
Aqueous-Phase Organometallic Catalysis (2nd Ed.); Weinheim: Wiley-VCH, 2004. p. 57-67.1998
Characterization of organometallic compounds in water
Aqueous-Phase Organometallic Catalysis (1st Ed.); Weinheim: Wiley-VCH, 1998. p. 46-55.Patents
2017
Method for producing methanol from carbon dioxide and hydrogen gas in homogeneously catalyzed reactions and in an aqueous medium
JP6579561; JP2018537461; WO2017093782.
2017.2016
Direct carbon dioxide hydrogenation to formic acid in acidic media
CA2900427; ES2739081; EP2956433; DK2956433; EP2956433; CN105283436; US9399613; CN105283436; US2016016875; EP2956433; CA2900427; WO2014125409; EP2767530.
2016.2008
Hydrogen production from formic acid
BRPI0718482; ES2538258; CA2666412; EP2086873; KR101434699; JP5390389; BRPI0718482; CN101541668; US8133464; US2010068131; JP2010506818; CN101541668; EP2086873; KR20090073230; EP1918247; AU2007311485; CA2666412; WO2008047312.
2008.