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ABSTRACT. In this work we give optimal, i.e. necessary and sufficient, conditions for
integrals of the Calculus of Variations to guarantee the existence of solutions – both weak
and variational solutions – to the associated L2-gradient flow. The initial values are merely
L2-functions with possibly infinite energy. In this context, the notion of integral convexity,
i.e. the convexity of the variational integral and not of the integrand, plays the crucial role;
surprisingly, this type of convexity is weaker than the convexity of the integrand. We
demonstrate this by means of certain quasi-convex and non-convex integrands.
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1. INTRODUCTION

The aim of our research is twofold. First, we have in mind to introduce a model to
handle evolutionary problems in nonlinear elasticity, following the celebrated approach
introduced by Ball [4] in 1977 for the stationary case. Secondly, we refer to L.C. Evans,
who stated in 2013 that one of the most fundamental open problems for quasi-convex
variational integrals

F(u) :=

ˆ
Ω

f(Du) dx

is the study of existence, uniqueness and regularity issues for the L2-gradient flow associ-
ated to F

∂tu− div
(
Dξf(Du)

)
= 0.
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The precise references is [19, Section 1c, (ii)]; see also the introduction in [20] for a similar
statement. In this paper we give a partial answer to these questions for general integral
functionals of the Calculus of Variations of the form

(1.1) F(u) :=

ˆ
Ω

f(x, u,Du) dx.

Here f : Ω × RN × RN×n → R is a Carathéodory integrand, quasi-convex with respect
to the gradient variable. We work in the context of variational solutions, which have
been introduced by Lichnewsky & Temam [30]. The related theory is the natural para-
bolic counterpart to the classical Calculus of Variations in the stationary setting. Indeed,
for parabolic problems variational solutions play the same role as minimizers for integral
functionals. For the precise notion we refer to Definition 2.1 below. In this context of
lack of convexity of the integrand we investigate necessary and sufficient conditions for
the existence of variational solutions. One of the main results of this paper is:

Theorem 1.1. Let F : W 1,p(Ω,RN )→ [0,∞] with p > 1 be a coercive integral functional
as in (1.1) with a quasi-convex Carathéodory integrand f(x, u, ξ). Then, there exists a
variational solution to the L2-gradient flow associated to F for any initial datum uo ∈
L2(Ω,RN ) if and only if F is convex.

Of course, to the list of assumptions on a quasi-convex integrand f certain growth con-
ditions have to be added in order to guarantee the lower semi-continuity of F; cf. [1, 33].
Precise statements will be given in § 2. At first glance, one might think that the convexity
of the integral – in the sequel we denote this by the notion integral convexity – implies the
convexity of the integrand f with respect to (u,Du). However, this is not the case. We
emphasize, that in the vectorial setting N > 1 a quadratic integrand of the type

(1.2) f(x, u, ξ) =

n∑
i,j=1

N∑
α,β=1

aijαβ(x)ξαi ξ
β
j +

N∑
α,β=1

cαβ(x)uαuβ ,

whose coefficients aijαβ(x) satisfy the Legendre-Hadamard condition

n∑
i,j=1

N∑
α,β=1

aijαβ(x)ηiηjϑ
αϑβ ≥ ν|η|2|ϑ|2 ∀η ∈ Rn, ϑ ∈ RN

for some ν > 0, leads to a convex integral F; cf. Section 4.2. Indeed, if the coefficients
aijαβ(x) are uniformly continuous and if the lower order coefficients cαβ(x) are chosen
large enough in the sense of positive definite matrices it can be established that the varia-
tional integral F satisfies Gårding’s inequality, which implies the integral convexity of F.
This is essentially the content of Theorem 4.6. Note that f in (1.2) is quasi-convex but
not necessarily convex. Of course, this specific integrand can be perturbed by adding any
non-negative Carathéodory integrand g : Ω×RN ×RN×n → [0,∞) which is convex with
respect to u and Du. Other prototypes of non-convex integrands which are integral convex
are

(1.3) f(x, u, ξ) = |ξ|2 + b(x)
(
|u|2 − 1

)2
and f(x, u, ξ) = |ξ|2 − c(x)|u|2

with b(x) ≥ 0 and ‖b‖L∞(Ω), ‖c‖L∞(Ω) small enough. For the precise statement and more
general cases we refer to § 5.

The above considerations show the importance of the notion of integral convexity in
the context of evolutionary variational problems. The main assertion of Theorem 1.1 re-
mains true also in the more general setting of functionals F : W 1,p(Ω,RN )→ [0,∞] with
p > 1, which are coercive and sequentially lower semi-continuous with respect to weak
convergence in W 1,p(Ω,RN ). For such functionals we prove:

Theorem 1.2. For any initial datum uo ∈ L2(Ω,RN ) there exists a variational solution
to the gradient flow associated to F if and only if F is convex.
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Some comments on the assumptions of Theorem 1.2 might be helpful. For a gen-
eral Carathéodory integrand f(x, u, ξ) the lower semi-continuity of the associated inte-
gral functional F with respect to the weak∗-W 1,∞(Ω,RN ) topology implies the quasi-
convexity of the integrand f . This is a well known result by Morrey in his pioneering
work in 1952 [36]; see also [14, Second Edition; Theorem 8.1] and [24, Theorem 5.2]. On
the contrary, under certain growth assumptions on the quasi-convex integrand the lower
semi-continuity of the associated integral functional F can be deduced; cf. [1, 33].

The above arguments show that the quasi-convexity assumption in a certain sense is a
necessary condition for the existence of variational solutions associated to energy integrals
of the Calculus of Variations. However, Theorem 1.1 shows that quasi-convexity alone is
not enough to guarantee the existence of variational solutions; in fact we establish in § 4.1
that quasi-convexity of the integrand in general does not imply integral convexity even with
fixed boundary data. Therefore one has to impose integral convexity. This is the essential
difference to the stationary setting in which quasi-convexity – and not integral convexity –
is the main assumption for existence of minimizers.

The whole picture will be completed by the fact that certain standard growth assump-
tions on the integrand f allow to derive that variational solutions are indeed solutions of the
associated parabolic system. This means that we can prove the existence of weak solutions
to the L2-gradient flow for some classes of quasi-convex integrals as in (1.1). That is, they
weakly satisfy the parabolic system

∂tu− div
(
Dξf(x, u,Du)

)
+Duf(x, u,Du) = 0.

In summary, our results can be interpreted as the parabolic analogue of the existence theo-
rem for quasi-convex integrals in the Calculus of Variations, in combination with the char-
acterization of those integral functionals which are weakly lower semi-continuous. Indeed,
quasi-convex integrands satisfying certain growth and coercivity assumptions are weakly
lower semi-continuous and this allows to derive general existence theorems for minimizers
by the direct methods of the Calculus of Variations. Vice versa, if the integral functional
is weakly lower semi-continuous, then the integrand is quasi-convex and, under certain
growth conditions, the minimizers solve the associated Euler-Lagrange system. On the
contrary we cannot expect in general that weak solutions minimize the associated varia-
tional integral, unless the integrand is convex with respect to u and Du or, more generally,
under integral convexity. Our paper shows that the same conclusion can be drawn for
parabolic problems: if the integral is convex, then weak solutions of the parabolic Euler-
Lagrange system are in fact variational solutions, see § 7.4. Finally, we emphasize that
variational solutions are unique provided F is convex; this differs from the stationary case,
where strict convexity of F is needed.

Let us briefly recall some prior work related to this research. We already mentioned the
paper by Lichnewsky & Temam [30] related to evolutionary minimal surfaces. Necessary
conditions for existence of parabolic minimizers have been derived by Wieser [43] in the
case p = 2 under standard growth conditions; see also Daneri & Savaré [17]. Existence
results, for instance in a metric context, have been obtained by Ambrosio [2], Ambrosio,
Gigli & Savaré [3], Mielke & Stefanelli [35], and Rossi, Savaré, Segatti & Stefanelli [40];
for weak and variational solutions we refer to [8, 9, 11]. The innovation of this paper is
the precise characterization of those not necessarily convex integrands from the Calculus
of Variations for which existence of unique variational solutions holds. Moreover, we deal
with L2(Ω)-initial data with possibly infinite energy.

In contrast, Müller, Rieger & Šverǎk constructed in [39] a smooth quasi-convex inte-
grand f : R2×2 → R with quadratic growth and inhomogeneity g : ΩT → R2, such that
the associated Cauchy-Dirichlet problem with u = 0 on the parabolic boundary of ΩT has
at least two solutions. One of the solutions is nowhere of class C1 in ΩT , while the other
one is smooth. Due to the non-uniqueness the associated integral functional can not be
integral convex.
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Finally, we mention that linear parabolic systems with principal part satisfying the strict
Legendre–Hadamard condition have been treated with different approaches in the litera-
ture. For instance, in [25] Dong & Kim considered the case of second order linear par-
abolic systems with leading coefficients satisfying bounded mean oscillation (BMO) and
vanishing mean oscillation (VMO) in the spatial variables, by means of methods intro-
duced by Krylov [28, 29] for linear elliptic and parabolic systems in non-divergence form;
see also [21, § 9] for similar results. We also quote [26] from the same authors; they deal
with higher-order linear parabolic systems in the general context of the strict Legendre-
Hadamard condition. Similar results for higher order systems are due to Boccia [5], Boc-
cia & Krylov [6] and Gallarati & Veraar [22]. Finally, we refer to [12, 31] for classical
existence results related to maximal monotone operators.

We conclude this introduction recalling a result by Evans [18] concerning partial regu-
larity of minimizers of quasi-convex integrands: is it possible to prove a similar result in
the context of parabolic variational solutions?

Acknowledgments. V. Bögelein has been supported by the FWF-Project P31956-N32
“Doubly nonlinear evolution equations”. P. Marcellini is a member of the Gruppo
Nazionale per l’Analisi Matematica, la Probalità e le loro Applicazioni (GNAMPA) of
the Istituto Nazionale di Alta Matematica (INdAM).

2. NOTATION AND RESULTS

Throughout the paper we denote by Ω a bounded domain in Rn with n ∈ N. By
ΩT := Ω × (0, T ) ⊂ Rn+1 we denote the space-time cylinder with base Ω. We consider
functionals F : W 1,p(Ω,RN )→ [0,∞] with p > 1 and Dirichlet boundary values

(2.1) u∗ ∈ L2(Ω,RN ) ∩W 1,p(Ω,RN ) with F(u∗) <∞.

We assume that F satisfies the following conditions

(2.2)


F[u] ≥ ν‖Du‖p

Lp(Ω,RN )
for all u ∈ u∗ +W 1,p

0 (Ω,RN×n),

F is sequentially lsc w.r.t. weak convergence on u∗ +W 1,p
0 (Ω,RN×n),

F is finite on u∗ + C∞0 (Ω,RN ).

In particular, (2.2)1 implies that F is coercive in u∗+W 1,p
0 (Ω,RN ), i.e. that the level sets

of F are bounded in u∗ +W 1,p
0 (Ω,RN ).

Definition 2.1. Suppose that F : W 1,p(Ω,RN )→ [0,∞] is a variational functional, u∗ ∈
W 1,p(Ω,RN ) with F(u∗) < ∞ and uo ∈ L2(Ω,RN ). A measurable map u : ΩT → RN
in the class

u ∈ C0
(
[0, T ];L2(Ω,RN )

)
∩ Lp

(
0, T ;u∗ +W 1,p

0 (Ω,RN )
)

is a variational solution associated to the functional F if and only if the variational inequal-
ity ˆ τ

0

F(u) dt ≤
ˆ τ

0

F(v) dt+

¨
Ωτ

∂tv · (v − u) dxdt

+ 1
2‖v(0)− uo‖2L2(Ω) − 1

2‖(v − u)(τ)‖2L2(Ω)(2.3)

holds true, for any τ ∈ (0, T ] and any v ∈ Lp(0, T ;u∗ + W 1,p
0 (Ω,RN )) with ∂tv ∈

L2(ΩT ,RN ) and v(0) ∈ L2(Ω,RN ). 2

Remark 2.2. Note that the variational inequality (2.3) implies that the initial values are
assumed, in the sense that u(0) = uo. This will be shown in § 7.2.6.

Now we are in the position to present the precise formulation of our main result.
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Theorem 2.3. Assume that p > 1 and that u∗ and F : W 1,p(Ω,RN ) → [0,∞] satisfy
hypothesis (2.1) and (2.2). Then, for any uo ∈ L2(Ω,RN ) there exists a unique variational
solution u to the gradient flow for F in the sense of Definition 2.1 if and only if F is convex
on L2(Ω,RN ) ∩ u∗ +W 1,p

0 (Ω,RN ).

Note that Theorems 1.1 and 1.2 are direct consequences of Theorem 2.3. The necessity
part of the Theorem will be proven in § 6, while the sufficiency part will be shown in § 7.
In § 7.1 we first consider the special case uo = u∗. Here, we proceed by the so called
method of elliptic regularization. The general case will be treated in § 7.2 with the method
of minimizing movements.

Remark 2.4. The variational solution from Theorem 2.3 additionally satisfies ∂tu ∈
L2(Ω× (ε, T ],RN ) and Du ∈ L∞(ε, T ;W 1,p(Ω,RN×n)) for any ε ∈ (0, T ); see § 7.2.

Remark 2.5. In § 7.1 we will prove the sufficiency part of Theorem 2.3 under the stronger
assumption uo = u∗. In this case hypothesis (2.2)3 is not necessary. Moreover, the varia-
tional solution u satisfies ∂tu ∈ L2(ΩT ,RN ) and Du ∈ L∞(0, T ;W 1,p(Ω,RN×n)); see
also Lemma 3.4. In this case the variational inequality (2.3) we can be re-written asˆ T

0

F(u) dt ≤
ˆ T

0

F(v) dt+

¨
ΩT

∂tu · (v − u) dxdt

for any v ∈ L2(ΩT ,RN ) ∩ Lp(0, T ;u∗ +W 1,p
0 (Ω,RN )).

As one particular case we deduce in § 4 the existence of weak solutions u to Cauchy-
Dirichlet problems associated to a class of parabolic linear systems

ut − div
(
A(x)Dxu

)
+ C(x)u = h in ΩT ,

under the Legendre-Hadamard rank-one condition forA(x) =
(
aαβij (x)

)
and the positivity

of the matrix C(x) =
(
cαβ(x)

)
. To perform this existence result we study the convexity

of the quadratic energy-integral

F(u) =

ˆ
Ω

[〈
A(x)Du(x), Du(x)

〉
+
〈
C(x)u, u

〉]
dx.

We also consider some properties related to the convexity of the energy integral in some
other non-quadratic cases; see § 4.1.

3. PRELIMINARY LEMMAS

Before starting with the proof, we give two preliminary results which will be needed.
The first result is a lower semi-continuity result for the integral functional F with respect
to strong convergence in L1. The precise result is

Lemma 3.1 (lower semi-continuity). Let p > 1 and u∗ ∈ L2(Ω,RN )∩W 1,p(Ω,RN ), and
assume that F : W 1,p(Ω,RN )→ [0,∞] is coercive in u∗+W

1,p
0 (Ω,RN ) and sequentially

lower semi-continuous with respect to the weak topology in u∗ + W 1,p
0 (Ω,RN ). Then,

for any sequence {uk}k∈N ⊂ Lp(0, T ;u∗ + W 1,p
0 (Ω,RN )) with uk → u strongly in

L1(ΩT ,RN ), we have ˆ T

0

F(u) dt ≤ lim inf
k→∞

ˆ T

0

F(uk) dt.

Proof. Without loss of generality we may assume that

lim inf
k→∞

ˆ T

0

F(uk) dt <∞,

since otherwise there is nothing to prove. By Fatou’s lemma we have

(3.1)
ˆ T

0

lim inf
k→∞

F(uk) dt ≤ lim inf
k→∞

ˆ T

0

F(uk) dt <∞,
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so that lim infk→∞F(uk(t)) < ∞ for a.e. t ∈ [0, T ]. This means that for a.e. t ∈ [0, T ]
there exists a subsequence K(t) ⊂ N such that

lim
K(t)3k→∞

F(uk(t)) = lim inf
k→∞

F(uk(t)) <∞.

The coercivity of F and Poincaré’s inequality then ensure that

lim
K(t)3k→∞

‖uk(t)‖W 1,p(Ω,RN ) <∞.

Therefore, there exists another subsequence K1(t) ⊂ K(t) such that

uk(t) ⇁ u(t) weakly in W 1,p(Ω,RN ) as K1(t) 3 k →∞.

Note that the limit u(t) is uniquely determined due to the strong convergence u(k) → u in
L1(ΩT ,RN ) as k →∞. The lower semi-continuity of F with respect to weak convergence
in W 1,p(Ω,RN ) implies that

F(u(t)) ≤ lim inf
K1(t)3k→∞

F(uk(t)) = lim inf
k→∞

F(uk(t)).

At this point, the claimed inequality follows with (3.1). �

Remark 3.2. The assumptions in the preceding lemma can be weakened in the sense
that the strong L1-convergence on ΩT can be replaced by uk → u strongly in L1(Ω ×
(ε, T ],RN ) for any ε ∈ (0, T ). 2

We will frequently use a well known time regularization. For v ∈ L1(ΩT ,RN ), vo ∈
L1(Ω,RN ) and h > 0 we define

(3.2) [v]h(t) := e−
t
h vo + 1

h

ˆ t

0

e
s−t
h v(s) ds.

A straight-forward computation shows that

(3.3) ∂t[v]h = − 1
h

(
[v]h − v

)
.

For more properties of the mollification we refer to [9, 27]. The next lemma ensures that
F is continuous with respect to the time regularization [v]h.

Lemma 3.3. Let p > 1 and u∗ ∈ L2(Ω,RN ) ∩ W 1,p(Ω,RN ), and assume that
F : W 1,p(Ω,RN ) → [0,∞] is coercive in u∗ + W 1,p

0 (Ω,RN ), sequentially lower
semi-continuous with respect to the weak topology in u∗ + W 1,p

0 (Ω,RN ), and convex on
L2(Ω,RN ) ∩ u∗ +W 1,p

0 (Ω,RN ). Consider

v ∈ L2(ΩT ,RN ) ∩ Lp
(
0, T ;u∗ +W 1,p

0 (Ω,RN )
)
, with F(v) ∈ L1(0, T )

and vo ∈ L2(Ω,RN ) ∩ u∗ +W 1,p
0 (Ω,RN ) with F(vo) <∞. Then, for any t ∈ [0, T ] we

have

F
(
[v]h(t)

)
≤ [F(v)]h(t),

where [F(v)]h is defined according to definition (3.2) with vo replaced by F(vo). Moreover,
F([v]h) ∈ L1(0, T ) and

lim
h↓0

ˆ T

0

F
(
[v]h

)
dt =

ˆ T

0

F(v) dt.

Proof. We first observe that

1

h(1− e− t
h )

ˆ t

0

e
s−t
h ds = 1.

This allows us to interpret the mollification [v]h – modulo a multiplicative factor – as
a mean with respect to the measure e

s−t
h ds. Accordingly to this interpretation we first
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rewrite F([v]h) and afterwards use the convexity of F and Jensen’s inequality. This proce-
dure yields the following point wise bound:

F
(
[v]h(t)

)
= F

(
e−

t
h vo +

1− e− t
h

h(1− e− t
h )

ˆ t

0

v(s)e
s−t
h ds

)
≤ e− t

hF(vo) +
(
1− e− t

h

)
F

(
1

h(1− e− t
h )

ˆ t

0

v(s)e
s−t
h ds

)
≤ e− t

hF(vo) + 1
h

ˆ t

0

F(v(s))e
s−t
h ds

= [F(v)]h(t).

Since F(v) ∈ L1(0, T ) and F(vo) < ∞ by assumption, an elementary calculation yields
the uniform bound ˆ T

0

[F(v)]h dt ≤
ˆ T

0

F(v) dt+ hF(vo) <∞,

which proves F([v]h) ∈ L1(0, T ). Moreover, from well-known properties of the time
mollification, we infer [v]h → v in L1(ΩT ,RN ) as h ↓ 0, so that Lemma 3.1 is applicable.
Combining this lemma with the preceding inequalities, we find thatˆ T

0

F(v) dt ≤ lim inf
h↓0

ˆ T

0

F
(
[v]h(t)

)
dt ≤ lim sup

h↓0

ˆ T

0

[F(v)]h dt ≤
ˆ T

0

F(v) dt.

This proves the last claim of the lemma. �

The next statement ensures the existence of the time derivative in L2(ΩR,RN ), pro-
vided the initial values coincide with the lateral boundary values.

Lemma 3.4. Let p > 1 and assume that u∗ satisfies (2.1) and F : W 1,p(Ω,RN )→ [0,∞]

is coercive in u∗ + W 1,p
0 (Ω,RN ), sequentially lower semi-continuous with respect to the

weak topology in u∗ + W 1,p
0 (Ω,RN ), and convex on L2(Ω,RN ) ∩ u∗ + W 1,p

0 (Ω,RN ).
Then, any variational solution u to the gradient flow associated to F in the sense of
Definition 2.1 with initial values uo = u∗ satisfies ∂tu ∈ L2(ΩT ,RN ) and Du ∈
L∞(0, T ;W 1,p(Ω,RN )).

Proof. Using u∗ as comparison map in the variational inequality (2.3), we observe that
the assumption F(u∗) < ∞ from (2.1) implies F(u) ∈ L1(ΩT ). Next, we choose the
mollification in time [u]h defined in (3.2) with vo = u∗ as comparison function in (2.3).
Since [u]h(0) = u∗ = uo, we obtainˆ τ

0

F(u) dt ≤
ˆ τ

0

F
(
[u]h

)
dt+

¨
Ωτ

∂t[u]h ·
(
[u]h − u

)
dxdt,

for any τ ∈ (0, T ]. Due to (3.3) and Lemma 3.3 this implies¨
Ωτ

∣∣∂t[u]h
∣∣2dxdt = − 1

h

¨
Ωτ

∂t[u]h ·
(
[u]h − u

)
dxdt

≤ 1
h

ˆ τ

0

[
F
(
[u]h

)
− F(u)

]
dt

≤ 1
h

ˆ τ

0

[
[F(u)]h − F(u)

]
dt

= −
ˆ τ

0

∂t[F(u)]h dt

= F(u∗)− [F(u)]h(τ)

≤ F(u∗) <∞,
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where [F(u)]h is defined according to (3.2) with vo replaced by F(u∗). This ensures
that the time derivative ∂tu exists with ∂tu ∈ L2(ΩT ,RN ) together with the quantitative
estimate ¨

ΩT

|∂tu|2dxdt ≤ F(u∗).

Moreover, since F is nonnegative, we deduce from the preceding chain of inequalities

[F(u)]h(τ) ≤ F(u∗)

for any τ ∈ (0, T ] and every h ∈ (0, T ]. Letting h ↓ 0 and using the coercivity of F, we
conclude the second claim Du ∈ L∞(0, T ;W 1,p(Ω,RN )). This finishes the proof of the
lemma. �

4. CONVEX INTEGRALS UNDER THE LEGENDRE-HADAMARD CONDITION

In this section we consider some notions specific for systems of differential equations,
as well as for the vector-valued calculus of variations, such as for instance quasiconvexity,
polyconvexity, null Lagrangians (or quasiaffinity). We refer to the original work by Morrey
[38], to Ball [4] and to the book of Dacorogna [14]. Specifically we are interested in
conditions (either necessary or sufficient conditions) for the convexity of the integral

F(u) =

ˆ
Ω

f(x, u,Du) dx , with u ∈ u∗ +W 1,p
0 (Ω,RN ),

when u∗ is a fixed function in W 1,p(Ω,RN ) and therefore u has the same boundary values
as u∗. In particular, we consider integrands whose second derivatives( ∂2f

∂ξαi ∂ξ
β
j

)
satisfy the Legendre-Hadamard rank-one condition in the following sense.

Definition 4.1. We consider coefficient functions aαβij : Ω → R for α, β = 1, 2, . . . , N

and i, j = 1, 2, . . . , n. We say that (aαβij (x)) satisfies the Legendre-Hadamard condition
iff

(4.1)
n∑

i,j=1

N∑
α,β=1

aαβij (x)θαθβηiηj ≥ 0

holds true for every x ∈ Ω and every θ ∈ RN , η ∈ Rn. We say that (aαβij (x)) satisfies the
strict Legendre-Hadamard condition iff

(4.2)
n∑

i,j=1

N∑
α,β=1

aαβij (x)θαθβηiηj ≥ ν|θ|2|η|2

holds true for a constant ν > 0, every x ∈ Ω and every θ ∈ RN , η ∈ Rn.

Prior work to the present article can be found in [13, 15, 16], and [14, first edition].
They concern the scalar setting and mostly the case N = n = 1.

4.1. The case without lower order terms. We first discuss the special case where f ∈
C2(RN×n), and

F(u) =

ˆ
Ω

f(Du(x))dx, with u ∈ u∗ +W 1,∞
0 (Ω,RN ).

We have the following relationship between integral convexity and rank one convexity.

Theorem 4.2.
(i) If F is convex on u∗ +W 1,∞

0 (Ω,RN ), then f is rank one convex.
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(ii) If f is quadratic and rank one convex, then F is convex on u∗ +W 1,∞
0 (Ω,RN ).

Proof. The convexity of F is clearly equivalent to the convexity of

g(t) = F(u+ tϕ) =

ˆ
Ω

f
(
Du(x) + tDϕ(x)

)
dx,

where u ∈ u∗ + W 1,∞
0 (Ω,RN ) and ϕ ∈ W 1,∞

0 (Ω,RN ). Since our hypotheses imply
g ∈ C2(R), the convexity of F is equivalent to

0 ≤ g′′(0) =

ˆ
Ω

〈
D2f(Du(x))Dϕ(x), Dϕ(x)

〉
dx

=

ˆ
Ω

n∑
i,j=1

N∑
α,β=1

∂2f

∂ξαi ∂ξ
β
j

(Du(x))ϕαxiϕ
β
xj dx.(4.3)

We first prove assertion (i). To this aim we choose xo ∈ Ω and % > 0 sufficiently small
so that B%(xo) b Ω and then ϕ with sptϕ b B%(xo). For ξ ∈ RN×n we choose any
u ∈ u∗ + W 1,∞

0 (Ω,RN ) so that Du = ξ in B%(xo). Since F is convex, we thus deduce
that ˆ

B%(xo)

n∑
i,j=1

N∑
α,β=1

∂2f

∂ξαi ∂ξ
β
j

(ξ)ϕαxiϕ
β
xj dx ≥ 0

for any ϕ ∈ W 1,∞
0 (Ω,RN ) with sptϕ b B%(xo). Using Fourier transform (cf. [14,

Lemma 5.27]), we deduce the Legendre-Hadamard condition (4.1) for the second deriva-
tives

(
∂2f

∂ξαi ∂ξ
β
j

(ξ)
)

in the sense of Definition 4.1, showing that indeed f is rank one convex.

For the proof of assertion (ii) we may assume that f is quadratic and rank one convex.
In particular,D2f is constant. Therefore, using Fourier transform, the computation in (4.3)
implies the convexity of F. �

Remark 4.3.
(i) In the scalar case N = 1, rank one convexity and convexity are equivalent and

the theorem is then stronger, since the convexity of f is then equivalent to the
convexity of F.

(ii) Note that the convexity of F does not imply the polyconvexity of f. Indeed if
n,N ≥ 3 and f is quadratic, there are examples (see [14, Thm. 5.25]) of quadratic
functions that are rank one convex but not polyconvex. This shows, in particular,
that the convexity of F does not imply that f is a sum of a convex function and
a quasiaffine function (also called null-Lagrangian). However when n = 2 or
N = 2 and f is quadratic, the convexity of F implies that f is indeed a sum of a
convex and a quasiaffine function, see [32, 41, 42].

(iii) We also give below a non-quadratic example (cf. Proposition 4.4) showing that,
even when N = n = 2, polyconvexity and therefore rank one convexity does not
imply, in general, that F is convex.

(iv) If p ≥ 2 and
|D2f(ξ)| ≤ a+ b|ξ|p−2

we can replace the affine space u∗ + W 1,∞
0 (Ω,RN ) by u∗ + W 1,p

0 (Ω,RN ), as
for example in the quadratic case where p = 2.

We now turn to a non-quadratic example.

Proposition 4.4. Let n = N = 2 and f(ξ) = (det ξ)2. Then F is not convex over
W 1,∞

0 (Ω,R2).

Proof. Before starting with the proof, let us introduce the following notation. For

ξ =

(
ξ1
1 ξ1

2

ξ2
1 ξ2

2

)
∈ R2×2
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we let

ξ̃ =

(
ξ2
2 −ξ2

1

−ξ1
2 ξ1

1

)
,

so that
det (ξ + η) = det ξ +

〈
ξ̃, η
〉

+ det η.

We then let Ω = (0, 2π)× (0, 2π) and consider

g(t) = F(u+ tϕ) =

ˆ
Ω

(
det(Du+ tDϕ)

)2
dx.

for u, ϕ ∈W 1,∞
0 (Ω,R2). As in the proof of Theorem 4.2, we compute

g′′(0) = 2

ˆ
Ω

[(〈
D̃u,Dϕ

〉)2
+ 2 detDu detDϕ

]
dx.

Choosing
u(x) = (sinx1, sinx2) and ϕ(x) = (sinx2, sinx1),

we find that g′′(0) < 0. This shows that F is not convex. �

4.2. Quadratic forms and the Gårding inequality. In this section we consider the qua-
dratic form Q : u∗ +W 1,2

0 (Ω,RN )→ R defined by

(4.4) Q(u) =

ˆ
Ω

n∑
i,j=1

N∑
α,β=1

aαβij (x)uαxiu
β
xj dx .

The following lemma is inspired by Gårding’s inequality, cf. [23, § 1.1] and [37, § 6.5].

Lemma 4.5. Let Ω ⊂ Rn be a bounded open set and let aαβij ∈ C0(Ω) for i, j =
1, 2, . . . , n and α, β = 1, 2, . . . , N satisfy the strict Legendre-Hadamard condition (4.2).
Then there exists a constant c ≥ 0 such that Q(u) + c‖u‖2L2(Ω,RN ) is a convex functional

on the affine space u∗ +W 1,2
0 (Ω,RN ) and also coercive, in the sense that

(4.5) Q(u) + c‖u‖2L2(Ω,RN ) ≥ 1
2ν‖Du‖

2
L2(Ω,RN×n)

for every u ∈ u∗ + W 1,2
0 (Ω,RN ). The constant c depends on n,N, ν,Ω, ‖aαβij ‖L∞ , and

on the modulus of continuity of the coefficients aαβij .

Proof. The proof is divided into six steps.
Step 1: The convexity of the functional

G(u) = Q(u) + c‖u‖2L2(Ω,RN )

is reduced to the convexity of the real function g : [0, 1]→ R defined by

g(t) = G
(
tu1 + (1− t)u2

)
= G

(
u2 + t(u1 − u2)

)
,

for every u1, u2 ∈ u∗+W 1,2
0 (Ω,RN ). We compute the second derivative g′′ of g at t = 0,

and check whether or not g′′(0) ≥ 0. With the abbreviation v = u1 − u2 ∈W 1,2
0 (Ω,RN ),

this condition can be rewritten as

(4.6) g′′ (0) = 2

ˆ
Ω

n∑
i,j=1

N∑
α,β=1

aαβij (x)vαxiv
β
xj dx+ 2c

ˆ
Ω

|v|2 dx ≥ 0.

Note, that this property is equivalent to the convexity of G. The condition should hold for
every v ∈W 1,2

0 (Ω,RN ).
Step 2: To make the presentation clearer, we shall use the more compact abbreviation

A(x) =
(
aαβij (x)

)
.
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Note that A ∈ C0
(
Ω,RN×n

)
. Moreover, for ξ ∈ RN×n we write

〈
A(x)ξ, ξ

〉
:=

n∑
i,j=1

N∑
α,β=1

aαβij (x)ξαi ξ
β
j .

Now, since Ω is a compact set in Rn and A continuous on Ω, for every ε > 0 there exists
δ > 0 such that

(4.7) |A(x)−A(x′)| < ε, whenever |x− x′| < δ.

Moreover, there exists a finite set of points xs in Ω, s = 1, 2, . . . , S, and open ballsBδ(xs)
centered in xs with radius δ, such that

Ω ⊂
S⋃
s=1

Bδ(xs).

For every index s = 1, 2, . . . , S we find test functions ηs ∈ C∞0 (Bδ(xs)) with 0 ≤ ηs ≤ 1
and |Dηs| ≤Mη for a constant Mη independent of s, such that

S∑
s=1

(
ηs(x)

)2
= 1 ∀ x ∈ Ω,

i.e. the family (ηs)
2 forms a partition of unity subordinate to the covering (Bδ(xs)). We

extend v ∈W 1,2
0 (Ω,RN ) to be equal to zero outside of Ω. We then have
ˆ

Ω

〈ADv,Dv〉dx =

S∑
s=1

ˆ
Bδ(xs)

〈
AηsDv, ηsDv

〉
dx.(4.8)

Step 3: We now compute the gradient

(4.9) D(ηsv) = ηsDv + v ⊗Dηs
and thus from (4.8) we obtain
ˆ

Ω

〈
ADv,Dv

〉
dx =

S∑
s=1

ˆ
Bδ(xs)

〈
A
(
D(ηsv)− v ⊗Dηs

)
, D(ηsv)− v ⊗Dηs

〉
dx

=: I + II + III + IV,(4.10)

with the obvious abbreviations

I :=

S∑
s=1

ˆ
Bδ(xs)

〈
AD(ηsv), D(ηsv)

〉
dx,

II := −
S∑
s=1

ˆ
Bδ(xs)

〈
Av ⊗Dηs, D(ηsv)

〉
dx,

III := −
S∑
s=1

ˆ
Bδ(xs)

〈
AD(ηsv), v ⊗Dηs

〉
dx,

IV :=

S∑
s=1

ˆ
Bδ(xs)

〈
Av ⊗Dηs, v ⊗Dηs

〉
dx.

In the next steps we estimate separately the four addenda.
Step 4: We let MA := ‖A‖L∞(Ω,RN×n), so that |A(x)| ≤ MA for all x ∈ Ω. For the

last addendum in (4.10) we have

|IV| ≤MA‖v‖2L2(Ω,RN )

S∑
s=1

‖Dηs‖2L∞(Ω,Rn) ≤ SMAM
2
η‖v‖2L2(Ω,RN ).(4.11)
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The second and the third addenda in (4.10) can be estimated similarly. Indeed, we have

|II|+ |III| ≤ 2
√
SMAMη‖v‖L2(Ω,RN )

[ S∑
s=1

‖D(ηsv)‖2L2(Bδ(xs),RN )

] 1
2

.

With (4.9), we obtain

‖D(ηsv)‖2L2(Bδ(xs),RN ) ≤ 2

ˆ
Bδ(xs)

η2
s |Dv|2 dx+ 2M2

η

ˆ
Bδ(xs)

|v|2 dx.

Summing over s = 1, . . . , S and taking into account that (η2
s)s=1,...,S forms a partition of

unity we obtain that
S∑
s=1

‖D(ηsv)‖2L2(Bδ(xs),RN ) ≤ 2‖Dv‖2L2(Ω,RN×n) + 2SM2
η‖v‖2L2(Ω,RN ).

Inserting this above, we get for ε1 > 0 that

|II|+ |III| ≤
√

8SMAMη‖v‖L2(Ω,RN )

[
‖Dv‖2L2(Ω,RN×n) + SM2

η‖v‖2L2(Ω,RN )

] 1
2

≤ ε1‖Dv‖2L2(Ω,RN×n) + ε1SM
2
η‖v‖2L2(Ω,RN ) +

2SM2
AM

2
η

ε1
‖v‖2L2(Ω,RN ).(4.12)

For the first addendum in (4.10) we use the uniform continuity in (4.7). With the abbrevi-
ation

Is :=

ˆ
Bδ(xs)

〈
A(xs)D(ηsv), D(ηsv)

〉
dx

we have

I =

S∑
s=1

Is +

S∑
s=1

ˆ
Bδ(xs)

〈
(A(x)−A(xs))D(ηsv), D(ηsv)

〉
dx

≥
S∑
s=1

Is − ε
S∑
s=1

ˆ
Bδ(xs)

|D(ηsv)|2 dx.(4.13)

Therefore it remains to estimate Is from below. This we shall do in the next step.
Step 5: Here we make use of the Fourier transform, a tool already shown to be useful in

the vector valued context of quadratic forms satisfying the Legendre-Hadamard condition
(see [38], [14]). We start from the expression of the quadratic form with frozen coefficients
for fixed s ∈ {1, 2, . . . , S} and with ηsv extended to be equal to zero out of the ballBδ(xs).
Using Plancherel’s formula twice and the strict Legendre-Hadamard condition (4.2), we
obtain

Is =

ˆ
Rn

〈
A(xs)D̂(ηsv), D̂(ηsv)

〉
dξ =

ˆ
Rn

〈
A(xs)η̂sv ⊗ ξ, η̂sv ⊗ ξ

〉
dξ

≥ ν
ˆ
Rn

∣∣η̂sv ⊗ ξ∣∣2dξ = ν

ˆ
Rn

∣∣D̂(ηsv)
∣∣2dξ = ν

ˆ
Bδ(xs)

|D(ηsv)|2dx

for every s ∈ {1, 2, . . . , S}. Joining this inequality with (4.13) and recalling that (η2
s) is a

partition of unity of Ω subordinate to the covering (Bδ(xs)), we obtain

I ≥ (ν − ε)
S∑
s=1

ˆ
Bδ(xs)

|D(ηsv)|2 dx

≥ 1
2 (ν − ε)

S∑
s=1

ˆ
Bδ(xs)

η2
s |Dv|2dx− (ν − ε)

S∑
s=1

ˆ
Bδ(xs)

|v⊗Dηs|2dx

≥ 1
2 (ν − ε)

ˆ
Ω

|Dv|2dx− (ν − ε)SM2
η

ˆ
Ω

|v|2dx.(4.14)
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Step 6: We can conclude the proof of Lemma 4.5. Joining (4.10) with the estimates of
the four addenda (4.11), (4.12), and (4.14), we obtainˆ

Ω

〈ADv,Dv〉dx ≥
[

1
2 (ν − ε)− ε1

] ˆ
Ω

|Dv|2dx

− SM2
η

[
MA + ε1 +

2M2
A

ε1
+ (ν − ε)

] ˆ
Ω

|v|2dx.

At this stage we choose ε and ε1 small enough such that 1
2 (ν − ε) − ε1 ≥ 1

2ν. These
particular choices specify the constant in front of the second integral on the right-hand side.
Overall, the constant depends on n,N, ν,Ω, ‖aαβij ‖L∞ , and the modulus of continuity of
the coefficients aαβij , but it is independent of u. Altogether we have shown thatˆ

Ω

〈ADv,Dv〉dx ≥ 1
2ν

ˆ
Ω

|Dv|2dx− c
ˆ

Ω

|v|2dx,

so that the second derivative g′′ in (4.6) is positive and the integral functional Q(u) +
c‖u‖2L2(Ω,RN ) is coercive as stated in (4.5). This concludes the proof of the Lemma. �

Now, Lemma 4.5 leads to the main theorem of this section.

Theorem 4.6. Let Ω, aαβij be as in Lemma 4.5. In particular we assume that the strict
Legendre-Hadamard condition (4.2) is satisfied. Let cαβ ∈ L∞(Ω) for every α, β =
1, 2, . . . , N . Furthermore, assume that

N∑
α,β=1

cαβ(x)uαuβ ≥ co|u|2 , for any u ∈ RN ,

for a certain constant co ≥ 0. Let

G(u) =

ˆ
Ω

[ n∑
i,j=1

N∑
α,β=1

aαβij (x)uαxiu
β
xj +

N∑
α,β=1

cαβ(x)uαuβ
]

dx .

Then for co large enough the functional G is convex and coercive on u∗ +W 1,2
0 (Ω,RN ).

Proof. If co ≥ c, where c is the constant from Lemma 4.5 the energy integral G is convex
and coercive on u∗ + W 1,2

0 (Ω,RN ). In fact, if Q is the quadratic form as in (4.4) and if
we denote by I the identity N ×N matrix, we have

G(u) = Q(u) +

ˆ
Ω

〈C(x)u, u〉dx

= Q(u) + c‖u‖2L2(Ω,RN ) +

ˆ
Ω

〈
(C(x)− c I)u, u

〉
dx,

i.e. G(u) is the sum of the convex and coercive functional Q(u) + c‖u‖2L2(Ω,RN ) and the
integral

´
Ω
〈(C(x)− c I)u, u〉dx, which is a convex and nonnegative functional, since the

matrix (C(x)− cI) is positive semidefinite. �

4.3. Linear parabolic systems under the Legendre-Hadamard condition. Let n,N ∈
N with n,N ≥ 2. We are interested in the existence of weak solutions to the Cauchy-
Dirichlet problem associated to the linear parabolic system of N partial differential equa-
tions

(4.15)
∂uα

∂t
−

n∑
i,j=1

N∑
β=1

∂

∂xi

(
aαβij

∂uβ

∂xj

)
−

N∑
β=1

cαβuβ = hα in ΩT

for α = 1, 2, . . . , N with continuous coefficients aαβij = aαβij (x), cαβ = cαβ(x), for
α, β = 1, 2, . . . , N and i, j = 1, 2, . . . , n. As before, u = u(x, t) is a map defined on the
parabolic cylinder ΩT with values in RN . Finally, h ∈ L2(Ω,RN ) is a given right-hand
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side. We note that the system has a variational structure; i.e. in the stationary case when
u(x, t) is independent of t > 0, the differential system (4.15) is the Euler-Lagrange system
associated to the first variation of an energy functional as in (1.1). In the general nonlinear
case the first variation takes the form

div
(
Dξf(x, u,Du)

)
= Duf(x, u,Du).

For the specific quadratic case considered in (4.15), the integrand f is given by

f(x, u, ξ) =

n∑
i,j=1

N∑
α,β=1

aαβij (x)ξαi ξ
β
j +

N∑
α,β=1

cαβ(x)uαuβ −
N∑
β=1

hβ(x)uβ .

At this stage, we need to explain in which sense the considered linear operator is coer-
cive: here we consider the strict Legendre-Hadamard rank-one condition (4.2) as stated
in Definition 4.1. We emphasize that (4.15) is a linear parabolic system satisfying the
strict Legendre-Hadamard rank-one condition, since we do not assume the simpler and
less general ellipticity condition

n∑
i,j=1

N∑
α,β=1

aαβij (x)ξαi ξ
β
j ≥ ν|ξ|

2, for every ξ ∈ RN×n,

which guarantees existence of the solution to the Cauchy-Dirichlet problem associated
to the parabolic system (4.15), cf. [21]. Both conditions are equivalent only the one-
dimensional case n = 1 and in the scalar case N = 1.

The existence of stationary weak solutions to the Dirichlet problem associated to (4.15)
under the strict Legendre-Hadamard condition (4.2) can be retrieved for example from
[23]. A similar result for the Cauchy-Dirichlet problem associated to (4.15) can be obtained
by applying Theorem 7.5 below. We only need to assume the strict Legendre-Hadamard
condition (4.2) and the continuity aαβij , c

αβ ∈ C0(Ω). Under these hypotheses the Cauchy-
Dirichlet problem associated to (4.15) has a unique weak solution provided the zero-order
terms cαβ(x) are sufficiently large in the sense that

N∑
α,β=1

cαβ(x)uαuβ ≥ co|u|2 ,

holds true for every x ∈ Ω and for some sufficiently large constant co ∈ R.

5. INTEGRAL CONVEXITY WITH NON-CONVEX INTEGRANDS

In this section we consider a Carathéodory integrand f : Ω × RN × RN×n → R satis-
fying for every (x, u, ξ) ∈ Ω× RN × RN×n the growth condition

(5.1) |f(x, u, ξ)| ≤ m0

(
1 + |ξ|2 + |u|q

)
for some constant m0 > 0 and some exponent q ≥ 2. We note that we do not require
that q remains below the Sobolev exponent 2∗. Throughout this section we assume that Ω
is a bounded domain in Rn. Under the above growth condition, the associated variational
integral F from (1.1) is well defined for any u ∈ W 1,2(Ω,RN ) ∩ Lq(Ω,RN ). The main
purpose of this section is to find suitable conditions on the integrand f under which the
integral functional F : uo + W 1,2

0 (Ω,RN ) ∩ Lq(Ω,RN ) → R is convex. Here, uo ∈
W 1,2(Ω,RN ) ∩ Lq(Ω,RN ) denotes some fixed Dirichlet boundary value. Of course, this
question can be reduced to the study of the real-valued function g : [0, 1]→ R defined by

g(t) = F
(
tu1 + (1− t)u2

)
,

for every u1, u2 ∈ uo + W 1,2
0 (Ω,RN ) ∩ Lq(Ω,RN ). In addition to the growth condi-

tion (5.1) we assume that the partial maps RN × RN×n 3 (u, ξ) 7→ f(x, u, ξ) are twice
continuously differentiable for a.e. x ∈ Ω, and that the second derivatives D2

uf(x, u, ξ),
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DuDξf(x, u, ξ), D2
ξf(x, u, ξ) remain bounded as long as (x, u, ξ) stay in bounded sub-

sets of Ω × RN × RN×n. Note that the second order derivatives exist for a.e. x ∈ Ω. As
mappings defined on Ω× RN × RN×n they are also Carathéodory functions.

In order to establish the convexity of the functional F on the affine space uo +
W 1,2

0 (Ω,RN ) ∩ Lq(Ω,RN ) we first consider the special case when uo ∈ W 1,∞(Ω,RN )

and u1, u2 ∈ uo +W 1,∞
0 (Ω,RN ). To simplify the notation we write u instead of u1 and v

instead of u2 − u1. Note that v ∈ W 1,∞
0 (Ω,RN ). Under these conditions, the real-valued

function

g(t) =

ˆ
Ω

f
(
x, u+ tv,Du+ tDv

)
dx

is twice differentiable. This can be justified by considering difference quotients. The
boundedness of the second derivatives of f on bounded subsets allows us to pass to the
limit inside the integral by using Lebesgue’s dominated convergence theorem. Therefore,
differentiation under the integral is allowed. We omit the details and give only the outcome
of this procedure. We compute

g′(t) =

ˆ
Ω

[
Duf

(
x, u+ tv,Du+ tDv

)
· v +Dξf

(
x, u+ tv,Du+ tDv

)
Dv
]

dx,

and

g′′(0) =

ˆ
Ω

[〈
D2
uf
(
x, u,Du

)
v, v
〉

+
〈
D2
ξf
(
x, u,Du

)
Dv,Dv

〉
+ 2
〈
DξDuf

(
x, u,Du

)
Dv, v

〉]
dx.

We now impose the following assumptions on the second derivatives of f :

(5.2)


〈
D2
ξf(x, u, ξ)λ, λ

〉
≥ m1|λ|2〈

D2
uf(x, u, ξ)θ, θ

〉
≥ −m2|θ|2∣∣DξDuf(x, u, ξ)
∣∣ ≤ m3

for every x ∈ Ω, u, θ ∈ RN and ξ, λ ∈ RN×n. For the constants appearing on the
right-hand side we require that m1 > 0, m2 ∈ R and m3 ≥ 0. This gives

g′′(0) ≥
ˆ

Ω

[
−m2|v|2 − 2m3|Dv||v|+m1|Dv|2

]
dx

≥
ˆ

Ω

[
− (m2 +m3)|v|2 + (m1 − m3)|Dv|2

]
dx .

At this stage we recall the Poincaré inequalityˆ
Ω

|v|2 dx ≤ Po
ˆ

Ω

|Dv|2 dx

which holds, because v = u1 − u2 ∈ W 1,∞
0 (Ω,RN ). Here Po = Po(n) denotes the

Poincaré constant. For instance, in the two dimensional case n = 2 it is known that
Po ≤

(
d
π

)2
, where d is the diameter of Ω. We therefore get

g′′(0) ≥
[
(m1 − m3)− Po(m2 +m3)

] ˆ
Ω

|Dv|2 dx .

Therefore, if we require

(5.3) m1 ≥ Pom2 + (1 + Po)m3 ,

we have g′′(0) ≥ 0 and the functional F from (1.1) is convex on uo +W 1,∞
0 (Ω,RN ).

In the general case of mappings uo ∈ W 1,2(Ω,RN ) ∩ Lq(Ω,RN ) and u1, u2 ∈ uo +

W 1,2
0 (Ω,RN ) ∩ Lq(Ω,RN ) we use a standard regularization procedure. In the strong

topology ofW 1,2(Ω,RN )∩Lq(Ω,RN ), we approximate uo by a sequence of maps u(ε)
o ∈
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W 1,∞(Ω,RN ), and ui − uo, i = 1, 2 by sequences v(ε)
i ∈ W 1,∞

0 (Ω,RN ). Then, we
let u(ε)

i := u
(ε)
o + v

(ε)
i for i = 1, 2. The convexity of F on the affine subspace u(ε)

o +

W 1,∞
0 (Ω,RN ) implies

(5.4) F
(
tu

(ε)
1 + (1− t)u(ε)

2

)
≤ tF

(
u

(ε)
1

)
+ (1− t)F

(
u

(ε)
2

)
.

Now, the growth condition (5.1) and the dominated convergence theorem together ensure
the continuity of F in the strong topology of W 1,2(Ω,RN ) ∩ Lq(Ω,RN ), that is

lim
ε↓0

F
(
u

(ε)
i

)
= F(ui) for i = 1, 2,

and also
lim
ε↓0

F
(
tu

(ε)
1 + (1− t)u(ε)

2

)
= F(tu1 + (1− t)u2).

Therefore, we can pass to the limit ε ↓ 0 on both sides of (5.4) and obtain the validity of
the convexity condition on uo +W 1,2

0 (Ω,RN ) ∩ Lq(Ω,RN ). Altogether, we have proved
the following result.

Theorem 5.1. Let Ω be bounded domain in Rn and f : Ω × RN × RN×n → R be a
Carathéodory integrand. Assume further, that the partial map (u, ξ) 7→ f(x, u, ξ) is
twice continuously differentiable for a.e. x ∈ Ω and that the derivatives D2

ξf(x, u, ξ),
DuDξf(x, u, ξ),D2

uf(x, u, ξ) are bounded on bounded subset of Ω×RN×RN×n. Finally,
we require that the growth and coercivity conditions (5.1), (5.2) and the smallness condi-
tion (5.3) are in force. Then the energy integral F : uo +W 1,2

0 (Ω,RN )∩Lq(Ω,RN )→ R
in (1.1) is convex.

At this point, one should emphasize that condition (5.3) holds, for instance, if m2 is
positive and sufficiently small and m3 is equal to zero. The one-dimensional case with
m3 = 0 was already considered in [14, § 3.2.2 and Prop. 2.5]. An other example can
be found in [40, § 8.1]. An energy integral (1.1) whose integrand f = f(x, u, ξ) is not
necessarily convex with respect to (u, ξ) and satisfies (5.2) is

F(u) =

ˆ
Ω

[
f(x,Du) + g(x, u) + h(x, u,Du)

]
dx ,

where
〈
D2
ξf(x, ξ)λ, λ

〉
≥ m1|λ|2 and

〈
D2
ug(x, u)θ, θ

〉
≥ −m2|θ|2, while the integrand

h is of the form

h(x, u, ξ) :=

n∑
i=1

N∑
α=1

ci(x)uαξαi ≡ 〈u⊗ c(x), ξ〉

with c ∈ L∞(Ω,Rn). Then, |DuDξh(x, u, ξ)| ≤ ‖c‖L∞(Ω,Rn) =: m3. Assuming that
m1 > 0, m2 ∈ R and m3 ≥ 0 satisfy (5.3), then the hypotheses of Theorem 5.1 are
satisfied. In particular, for the integrand

g(x, u) := b(x)
(
|u|2 − 1

)2
,

with a nonnegative function b ∈ L∞(Ω) we have〈
D2
ug(x, u)θ, θ

〉
= 4 b(x)

[
2(u · θ)2 +

(
|u|2 − 1

)
|θ|2
]
≥ −4‖b‖L∞(Ω)|θ|2

so that (5.2)2 is satisfied with m2 = 4‖b‖L∞(Ω). Therefore, the integral

(5.5) F(u) =

ˆ
Ω

[
f(x,Du) + b(x)

(
|u|2 − 1

)2
+ u · (Duc)

]
dx

is convex on the affine subspace u ∈ uo+W 1,2
0 (Ω,RN )∩L4(Ω,RN ) provided we assume

that b ≥ 0, that
〈
D2
ξf(x, ξ)λ, λ

〉
≥ m1|λ|2, and that

m1 ≥ 4Po‖b‖L∞(Ω) + (1 + Po)‖c‖L∞(Ω,Rn) .
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6. INTEGRAL CONVEXITY AS NECESSARY CONDITION FOR EXISTENCE

Here we prove that the convexity of F is a necessary condition for the existence of varia-
tional solutions. In particular, the convexity of the integral functional can not be weakened
to quasiconvexity of the integrand. This seems to be a fundamental difference between el-
liptic and evolutionary variational problems. For integrands with quadratic growth this fact
has already been observed by Wieser [43, Thm. 5.1]. For a more recent result we also refer
to [17]. Here we give Wieser’s result in a more general setting with a completely different
proof. With our proof we are able to treat the case p 6= 2 and general functionals without
growth conditions from above. We point out that the following result is slightly stronger
than the necessity part of Theorem 2.3 in the sense that we only need to assume existence
for initial values uo ∈ L2(Ω,RN )∩W 1,p(Ω,RN ) and not for any uo ∈ L2(Ω,RN ). More-
over, it suffices to assume that F is coercive in u∗ +W 1,p

0 (Ω,RN ) instead of the stronger
assumption (2.2)1.

Theorem 6.1. Let p > 1, u∗ ∈ W 1,p(Ω,RN ) and F : W 1,p(Ω,RN ) → [0,∞] be a
variational functional which is coercive and sequentially weakly lower semi-continuous
on u∗ + W 1,p

0 (Ω,RN ). Suppose that for every initial datum uo ∈ L2(Ω,RN ) ∩
u∗ + W 1,p

0 (Ω,RN ) there exists a variational solution u ∈ C0([0, T ];L2(Ω,RN )) ∩
Lp(0, T ;u∗ + W 1,p

0 (Ω,RN )) to the gradient flow for F in the sense of Definition 2.1.
Then F is convex on L2(Ω,RN ) ∩ u∗ +W 1,p

0 (Ω,RN ).

Proof. We fix w0, w1 ∈ L2(Ω,RN )∩u∗+W 1,p
0 (Ω,RN ) with F(wi) <∞ for i ∈ {1, 2}.

For λ ∈ [0, 1], we consider the convex combinationwλ := (1−λ)w0+λw1 ∈ L2(Ω,RN )∩
u∗ + W 1,p

0 (Ω,RN ) as initial values. According to the above assumptions, there exists
a variational solution u ∈ L∞(0, T ;L2(Ω,RN )) ∩ Lp(0, T ;u∗ + W 1,p

0 (Ω,RN )) to the
gradient flow for F with the initial datum wλ. We exploit the variational inequality (2.3)
for this solution u once with the comparison map v(x, t) = w0(x) and once with v(x, t) =
w1(x), which yields the inequalities

ˆ τ

0

F(u) dt ≤ τ F(w0)− 1
2‖w0 − u(τ)‖2L2(Ω,RN ) + 1

2‖w0 − wλ‖2L2(Ω,RN )

= τ F(w0)− 〈w0, wλ − u(τ)〉L2(Ω,RN )

+ 1
2‖wλ‖

2
L2(Ω,RN ) − 1

2‖u(τ)‖2L2(Ω,RN )

and ˆ τ

0

F(u) dt ≤ τ F(w1)− 1
2‖w1 − u(τ)‖2L2(Ω,RN ) + 1

2‖w1 − wλ‖2L2(Ω,RN )

= τ F(w1)− 〈w1, wλ − u(τ)〉L2(Ω,RN )

+ 1
2‖wλ‖

2
L2(Ω,RN ) − 1

2‖u(τ)‖2L2(Ω,RN ),

both for a.e. τ ∈ [0, T ]. We multiply the first inequality with (1 − λ)/τ , the second one
with λ/τ , and sum up the results. This leads us to

−
ˆ τ

0

F(u) dt ≤ (1− λ)F(w0) + λF(w1)

− 1
τ

[
〈wλ, wλ − u(τ)〉L2(Ω,RN ) − 1

2‖wλ‖
2
L2(Ω,RN ) + 1

2‖u(τ)‖2L2(Ω,RN )

]
= (1− λ)F(w0) + λF(w1)− 1

2τ ‖wλ − u(τ)‖2L2(Ω,RN )

≤ (1− λ)F(w0) + λF(w1)(6.1)

for every τ ∈ A1, for a subset A1 ⊂ [0, T ] with |A1| = T . From Remark 2.2 we know that
u(t)→ u(0) = wλ strongly in L2(Ω,RN ) as t ↓ 0. Next, we consider the set A2 ⊂ [0, T ]
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of times t ∈ [0, T ] with u(t) ∈W 1,p(Ω,RN ), which satisfies |A2| = T , and claim that

(6.2) F(wλ) ≤ lim inf
A23t↓0

F(u(t)).

If the right-hand side is infinite, there is nothing to prove. In the other case, we choose a
sequence A2 3 ti ↓ 0 for which the limes inferior is attained, i.e.

lim
i→∞

F(u(ti)) = lim inf
A23t↓0

F(u(t)) <∞.

Since the functional F is coercive in u∗ + W 1,p
0 (Ω,RN ), we deduce that the sequence

u(ti) is bounded in W 1,p(Ω,RN ). By passing to a not relabelled subsequence, we can
therefore assume that u(ti) ⇁ v weakly in W 1,p(Ω,RN ) in the limit i → ∞, for some
v ∈ u∗ + W 1,p

0 (Ω,RN ). Since we know already that u(ti) → wλ in L2(Ω,RN ), we
conclude v = wλ. Now, the claim (6.2) is a consequence of the lower semi-continuity
of F with respect to weak convergence in u∗ + W 1,p

0 (Ω,RN ). From (6.2) we deduce
furthermore that

(6.3) F(wλ) ≤ lim inf
A23t↓0

F(u(t)) ≤ lim inf
τ↓0

−
ˆ τ

0

F(u(t)) dt ≤ lim inf
A13τ↓0

−
ˆ τ

0

F(u(t)) dt

holds true. Combining the estimates (6.1) and (6.3), we deduce

F
(
(1− λ)w0 + λw1

)
= F(wλ) ≤ (1− λ)F(w0) + λF(w1),

which yields the claimed convexity of F in the case F(wi) < ∞ for i ∈ {1, 2}. If either
F(w0) or F(w1) is infinite, the inequality holds trivially. This concludes the proof of the
theorem. �

7. INTEGRAL CONVEXITY AS SUFFICIENT CONDITION FOR EXISTENCE

7.1. Proof via Elliptic Regularization. In this subsection we prove the sufficiency part
of Theorem 2.3 in the special case uo = u∗.

Theorem 7.1. Assume that p > 1 and that u∗ and F : W 1,p(Ω,RN ) → [0,∞] satisfy
(2.1) and (2.2)1,2, and that F is convex on L2(Ω,RN ) ∩ u∗ + W 1,p

0 (Ω,RN ). Then, there
exists a variational solution u ∈ C0([0, T ];L2(Ω,RN )) ∩ L∞(0, T ;u∗ + W 1,p

0 (Ω,RN ))
to the gradient flow for F in the sense of Definition 2.1 with initial datum uo = u∗.

7.1.1. Elliptic Regularization. We now consider for ε ∈ (0, 1] variational integrals on the
space-time cylinder ΩT := Ω× (0, T ) defined by

Fε(v) :=

ˆ T

0

e−
t
ε

[ˆ
Ω

1
2 |∂tv|

2dx+ 1
εF(v(t))

]
dt

for mappings v : ΩT → RN . To deal with the associated problem of existence, one first
has to specify the function spaces in which the minimization of Fε should take place. The
natural class K of functions consists of those v ∈ Lp

(
0, T ;W 1,p

0 (Ω,RN )
)

with ∂tv ∈
L2(ΩT ,RN ) and v(0) = 0. We now consider

Duo(F) :=
(
uo + K

)
∩
{
F(v) ∈ L1(0, T )

}
,

which is non-empty. Indeed the time-independent extension of uo to ΩT belongs to this
class, since

Fε(uo) =
(
1− e−

T
ε

)
F(uo) <∞.

At this stage it is worth to remark, that the hypothesis ∂tv ∈ L2(ΩT ,RN ) can be used to
derive an L2-bound for v in terms of ∂tv and uo. Indeed, for v ∈ Duo(F) and t ∈ (0, T ]
we have

‖v(t)‖2L2(Ω,RN ) ≤ 2‖v(t)− uo‖2L2(Ω,RN ) + 2‖uo‖2L2(Ω,RN )

≤ 2

ˆ
Ω

∣∣∣∣ ˆ t

0

∂tv(τ)dτ

∣∣∣∣2dx+ 2‖uo‖2L2(Ω,RN )
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≤ 2t‖∂tv‖2L2(ΩT ,RN ) + 2‖uo‖L2(Ω,RN ).

We integrate the preceding inequality with respect to t ∈ (0, T ) and obtain

‖v‖2L2(ΩT ,RN ) ≤ T
2‖∂tv‖2L2(ΩT ,RN ) + 2T‖uo‖2L2(Ω,RN ),

which is the desired L2-bound in terms of uo and ∂tv. Next, we observe that Fε is well
defined on Duo(F). Moreover, with (2.2)1 we can easily estimate Fε(v) from below.
Indeed we have

Fε(v) ≥
¨

ΩT

e−
t
ε

[
1
2 |∂tv|

2 + ν
ε |Dv|

p
]
dxdt ≥ e−T/ε

¨
ΩT

[
1
2 |∂tv|

2 + ν
ε |Dv|

p
]
dxdt.

On the one hand this implies for any v ∈ Duo(F) that

‖v‖2L2(Ω,RN ) + ‖∂tv‖2L2(Ω,RN ) ≤ 2(1 + T 2)eT/εFε(v) + 2T‖uo‖2L2(Ω,RN ),

while on the other hand, we have

‖v‖Lp(Ω,RN ) + ‖Dv‖Lp(Ω,RN×n) ≤ (1 + CP )
[
‖uo‖W 1,p(Ω,RN ) + ‖Dv‖Lp(Ω,RN×n)

]
≤ (1 + CP )

[
‖uo‖W 1,p(Ω,RN ) +

(
ε
ν e
T/εFε(v)

) 1
p
]
.

Therefore, any Fε-minimizing sequence (uk)k∈N in Duo(F) is bounded in L2(Ω,RN ) ∩
Lp
(
0, T ;W 1,p(Ω,RN )

)
, and the associated sequence of time derivatives ∂tuk is also

bounded in L2(Ω,RN ). This implies that (uk)k∈N is also bounded in W 1,1(ΩT ,RN ).
This allows us to pass to a non-relabeled subsequence such that

uk → u strongly in L1(ΩT ,RN ),

∂tuk ⇁ ∂tu weakly in L2(ΩT ,RN ),

uk ⇁ u weakly in Lp
(
0, T ;W 1,p(Ω,RN )

)
.

Note that u ∈ uo +K. Taking into account Lemma 3.1 we have

Fε(u) ≤ lim inf
k→∞

Fε(uk),

proving that u ∈ Duo(F) is the desired minimizer of Fε. In view of the convexity of F,
this minimizer is unique. We have thus proven the following existence result.

Lemma 7.2. For any given ε ∈ (0, 1] there exists a unique Fε-minimizing map uε in the
class Duo(F).

7.1.2. Minimality revisited. For fixed ε ∈ (0, 1] let uε denote the unique minimizer of the
functional Fε in the class Duo(F). We consider mappings ϕ ∈ Lp

(
0, T ;W 1,p

0 (Ω,RN )
)

with time derivative ∂tϕ ∈ L2(ΩT ,RN ), initial values ϕ(0) ∈ L2(Ω,RN ), and such that

(7.1)
ˆ T

0

F
(
(uε + ϕ)(t)

)
dt <∞.

For δ ∈ (0, e−T/ε] and (x, t) ∈ ΩT we define

wε,δ(x, t) := uε(x, t) + δet/εζ(t)ϕ(x, t),

where ζ ∈ W 1,∞(0, T ) with 0 ≤ ζ ≤ 1. We assume either ζ(0) = 0 or ϕ(0) = 0.
Then it is easy to check that wε,δ ∈ uo + K and therefore we only need to establish
Fε(wε,δ) <∞. Indeed, with σ(t) := δet/εζ(t) ∈ [0, 1] we can write wε,δ(x, t) as convex
combination (1− σ(t))uε(x, t) + σ(t)

(
ϕ(x, t) + uε(x, t)

)
. Therefore, the convexity of F

yields ˆ T

0

F
(
wε,δ(t)

)
dt =

ˆ T

0

F
(
(1− σ(t))uε(t) + σ(t)

(
ϕ(t) + uε(t)

))
dt
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≤
ˆ T

0

[
(1− σ(t))F

(
uε(t)

)
+ σ(t)F

(
(ϕ+ uε)(t)

)]
dt

≤
ˆ T

0

F
(
uε(t)

)
dt+

ˆ T

0

F
(
(ϕ+ uε)(t)

)
dt <∞,

proving the finiteness of the Fε-energy.
Having arrived at this stage, we can argue as in [10, § 5.2]. First we test the minimality

condition against wε,δ . The resulting inequality is afterwards re-written. In this step only
the convexity of the integral functional F is used. Here, the restriction on δ comes into the
play. It ensures that σ(t) := δet/εζ(t) ∈ [0, 1], so that we can re-write wε,δ(x, t) as above
as a convex combination. The result is then multiplied by ε/δ. In the resulting inequality
we pass to the limit δ ↓ 0. As final outcome of the whole procedure we have

ˆ T

0

ζ(t)F(uε(t)) dt ≤
ˆ T

0

ζ(t)F
(
uε(t) + ϕ(t)

)
dt+

¨
ΩT

ζ∂tuε · ϕdxdt

+ ε

¨
ΩT

[
ζ ′∂tuε · ϕ+ ζ∂tuε · ∂tϕ

]
dxdt(7.2)

for any ϕ ∈ Lp
(
0, T ;W 1,p

0 (Ω,RN )
)

with ∂tϕ ∈ L2(ΩT ,RN ) satisfying (7.1), for any
ζ ∈ W 1,∞(0, T ) with 0 ≤ ζ ≤ 1, such that either ζ(0) = 0 or ϕ(0) = 0. It should be
emphasized again, that in the whole argument leading to (7.2) only the convexity of the
integral functional F enters.

7.1.3. Energy estimates, weak convergence and lower semicontinuity. What essentially is
needed to deduce suitable energy estimates, is that on the level of integral functionals the
assertion F([u]h) ≤ [F(u)]h holds true. Here it is of central importance that this can be
achieved assuming only the integral convexity of F. In the above estimate, [u]h is defined
with vo = uo, while [F(u)]h is defined with initial value F(uo). The inequality itself can
be interpreted as Jensen’s inequality for the time regularization, namely that the variational
integral of the time regularization of s 7→ u(s) lies below the time regularization of the
variational integrals s 7→ F(u(s)). The assertion is proved in Lemma 3.3.

Having these ingredients at hand we can argue along the line of [10, § 5.3], to con-
clude that the assertions (5.6) – (5.10) from that paper hold true also in our context. More
precisely, for any ε ∈ (0, 1] we have

(7.3)
¨

ΩT

|∂tuε|2 dxdt ≤ F(uo),

(7.4) ‖uε‖2L2(ΩT ,RN ) ≤ T
2F(uo) + 2T‖uo‖2L2(Ω,RN )

(7.5) ‖uε(t1)− uε(t2)‖L2(Ω,RN ) ≤
√
F(uo)

√
|t− s| ∀ 0 ≤ t1 < t2 ≤ T,

(7.6)
ˆ t2

t1

F
(
uε(t)

)
dt ≤

(
t2 − t1 + 1

2ε
)
F(uo) ∀ 0 ≤ t1 < t2 ≤ T.

Taking into account (2.2)1, the energy estimate (7.6) can be converted into an energy bound
for the spatial derivatives

(7.7) ν

¨
Ω×(t1,t2)

|Duε|2 dxdt ≤
(
t2 − t1 + 1

2ε
)
F(uo) ∀ 0 ≤ t1 < t2 ≤ T.

By (7.3), (7.4), and (7.7) (with t1 = 0 and t2 = T ) the family (uε)ε∈(0,1] of Fε-
minimizing functions is bounded in W 1,1(ΩT ,RN ). Therefore, we infer the existence
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of some sequence εj ↓ 0, which we still denote by ε, and some limit function u ∈
Lp(0, T ;uo +W 1,p

0 (ΩT ,RN )) with ∂tu ∈ L2(ΩT ,RN ) such that
uε → u strongly in L1(ΩT ,RN ),

∂tuε ⇁ ∂tu weakly in L2(ΩT ,RN ),

Duε ⇁ Du weakly in Lp(ΩT ,RN×n).

At this point it remains to establish thatˆ t2

t1

F(u(t)) dt ≤ lim inf
ε↓0

ˆ t2

t1

F
(
uε(t)

)
dt ≤ (t2 − t2)F(uo)(7.8)

whenever 0 ≤ t1 < t2 ≤ T . This, however, is a direct consequence of Lemma 3.1. Apply-
ing (7.8) with t1 = 0 and t2 = T we conclude that F(u(·)) ∈ L1(0, T ). It remains to show
that u(0) = uo. This can be derived with the argument from [10, proof of Lemma 5.1].
Overall we proved u ∈ Duo(F).

7.1.4. Passage to the limit and conclusion of the proof. In this section we pass to the limit
ε ↓ 0 in the sequence of Fε minimizers uε on ΩT . We consider v ∈ Lp

(
0, T ;uo +

W 1,p
0 (Ω,RN )

)
with ∂tu ∈ L2(ΩT ,RN ) and v(0) ∈ L2(ΩT ,RN ). We can also assume

that F(v(·)) ∈ L1(0, T ), since otherwise the variational inequality trivially holds. We de-
fine ϕ := v − uε. Observe that ϕ ∈ Lp

(
0, T ;W 1,p

0 (Ω,RN )
)

and that ∂tϕ ∈ L2(ΩT ,RN )

and ϕ(0) ∈ L2(ΩT ,RN ). Moreover, the finite energy assumption (7.1) holds. This allows
us to apply (7.2) with ϕ and ζθ, with the specific choice ζθ(t) = 1

θ t for t ∈ [0, θ), ζθ(t) = 1

for t ∈ [θ, T − θ], and ζθ(t) = 1
θ (T − t) for t ∈ (T − θ, T ]. With these choices (7.2) turns

intoˆ T

0

F
(
uε(t)

)
dt

≤
ˆ T

0

(
1− ζθ(t)

)
F
(
uε(t)

)
dt+

¨
ΩT

ζθ∂tuε · (v − uε)dxdt

+

ˆ T

0

F(v(t))dt+ ε

¨
ΩT

[
ζ ′θ∂tuε · (v − uε) + ζθ∂tuε · ∂t(v − uε)

]
dxdt.

The integrals on the right can now be treated exactly as in [10, § 5.4]. We first pass to
the limit ε ↓ 0. Here, we apply the lower-semicontinuity from (7.8) to the left-hand side
integral, while for the initial boundary term we use (7.5). After that we pass to the limit
θ ↓ 0. This yields the variational inequality for the weak limit u, i.e. we haveˆ T

0

F(u(t))dt ≤
ˆ T

0

F(v(t))dt+

¨
ΩT

∂tu · (v − u)dxdt

+ 1
2

∥∥v(0)− uo
∥∥2

L2(Ω,RN )
− 1

2

∥∥(v − u)(T )
∥∥2

L2(Ω,RN )
,

for any v ∈ Lp
(
0, T ;W 1,p

uo (Ω,RN )
)

with ∂tv ∈ L2(ΩT ,RN ) and v(0) ∈ L2(ΩT ,RN ),
such that F(v(·)) ∈ L1(0, T ). This completes the proof of Theorem 7.1.

7.2. Proof via Minimizing Movements. In this subsection we prove the sufficiency part
of Theorem 2.3 in the general case.

Theorem 7.3. Assume that p > 1 and that u∗ and F : W 1,p(Ω,RN )→ [0,∞] satisfy (2.1)
and (2.2) and that F is convex on L2(Ω,RN ) ∩ u∗ + W 1,p

0 (Ω,RN ). Then, for any uo ∈
L2(Ω,RN ) there exists a variational solution u ∈ C0([0, T ];L2(Ω,RN ))∩Lp(0, T ;u∗+

W 1,p
0 (Ω,RN )) to the gradient flow for F in the sense of Definition 2.1.

We redefine the space Du∗(F) as

Du∗(F) :=
{
u ∈ u∗ +W 1,p

0 (Ω,RN ) : F(u) <∞
}
.
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7.2.1. Time discretization. For k ∈ N, we consider the step size hk := T
k and associ-

ated times tk,i := ihk for i ∈ {−1, . . . , k}. The strategy is to construct approxima-
tions u(k) : Ω × (−hk, T ] → RN that are constant in time on each of the time intervals
(tk,i−1, tk,i], i.e.

u(k)(t) := uk,i for t ∈ (tk,i−1, tk,i] with i ∈ {0, . . . , k}.
The approximations uk,i on the separate time intervals are determined by solving an elliptic
minimization problem. We begin by defining uk,0 := uo. Then, assuming that the map
uk,i−1 ∈ L2(Ω,RN ) has already been defined for some i ∈ {1, . . . , k}, we define uk,i ∈
Du∗(F) ∩ L2(Ω,RN ) as minimizer of the convex functional

Fk,i(v) := F(v) + 1
2hk

ˆ
Ω

|v − uk,i−1|2dx

in the classDu∗(F)∩L2(Ω,RN ). The existence of this minimizer follows from the Direct
Method of the Calculus of Variation due to the convexity of the functional F. Indeed, from
the coercivity assumption (2.2)1 and Poincaré’s inequality we have

‖v‖Lp(Ω,RN ) ≤ ‖u∗‖Lp(Ω,RN ) + CP ‖Dv −Du∗‖Lp(Ω,RN×n)

≤ ‖u∗‖Lp(Ω,RN ) + CP ‖Du∗‖Lp(Ω,RN×n) + CP ‖Dv‖Lp(Ω,RN×n).

Therefore, an Fk,i-minimizing sequence (v`)`∈N of maps v` ∈ Du∗(F) ∩ L2(ΩT ,RN ) is
uniformly bounded in L2(Ω,RN ) ∩ W 1,p(Ω,RN ), and we can pass to (a non-relabeled
subsequence) such that v` ⇀ uk,i weakly in W 1,p(Ω,RN ) and weakly in L2(Ω,RN ) for
some function uk,i ∈ L2(Ω,RN ) ∩W 1,p(Ω,RN ). Due to the lower semi-continuity of F
with respect to weak convergence we arrive at

(7.9) Fk,i(uk,i) ≤ lim inf
`→∞

Fk,i(v`) = inf
v∈Du∗ (F)∩L2(Ω,RN )

Fk,i(v).

Note that the minimizer is unique.

7.2.2. Minimizing property of the approximations. We let k ∈ N. For τ ∈ (0, T ] we define
the functional

F(k)(v) :=

ˆ τ

0

F(v(t)) dt+ 1
2hk

¨
Ωτ

∣∣v(t)− u(k)(t− hk)
∣∣2dxdt

for functions v ∈ L2(ΩT ,RN ) ∩ Lp(0, T ;u∗ +W 1,p
0 (Ω,RN )). For j := d τhk e we have

F(k)
(
u(k)

)
=

j∑
i=1

ˆ τ∧ihk

(i−1)hk

[
F(uk,i) + 1

2hk

ˆ
Ω

|uk,i − uk,i−1|2dx

]
dt

=

j∑
i=1

ˆ τ∧ihk

(i−1)hk

Fk,i(uk,i)dt

≤
j∑
i=1

ˆ τ∧ihk

(i−1)hk

Fk,i(v(t))dt

=

j∑
i=1

ˆ τ∧ihk

(i−1)hk

[
F(v(t)) + 1

2hk

ˆ
Ω

∣∣v(t)− u(k)(t− hk)
∣∣2dx

]
dt

= F(k)(v),

for any function v as above. This shows that u(k) minimizes the functional F(k) in the
function class L2(ΩT ,RN ) ∩ Lp(0, T ;u∗ + W 1,p

0 (Ω,RN )). For any s ∈ (0, 1) and v ∈
L2(ΩT ,RN ) ∩ Lp(0, T ;u∗ +W 1,p

0 (Ω,RN )) we consider the convex combination of u(k)

and v defined by

w := sv + (1− s)u(k) ∈ L2(ΩT ,RN ) ∩ Lp
(
0, T ;u∗ +W 1,p

0 (Ω,RN )
)
.
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Using the minimality property of u(k) shown above and the convexity of F, we obtainˆ τ

0

F
(
u(k)

)
dt

≤
ˆ τ

0

F(w) dt

+ 1
2hk

¨
Ωτ

[∣∣w − u(k)(t− hk)
∣∣2 − ∣∣u(k) − u(k)(t− hk)

∣∣2]dxdt

≤
ˆ τ

0

[
sF(v) + (1− s)F

(
u(k)

)]
dt

+ 1
hk

¨
Ωτ

[
s2

2

∣∣v − u(k)
∣∣2 + s

(
v − u(k)

)
·
(
u(k) − u(k)(t− hk)

)]
dxdt

for any v ∈ L2(ΩT ,RN ) ∩ Lp(0, T ;u∗ + W 1,p
0 (Ω,RN )). After re-absorbing the second

integral appearing on the right-hand side on the left, dividing the result by s > 0 and letting
s ↓ 0, we findˆ τ

0

F
(
u(k)

)
dt ≤

ˆ τ

0

F(v) dt+ 1
hk

¨
Ωτ

(
v − u(k)

)
·
(
u(k) − u(k)(t− hk)

)
dxdt.

We extend v to negative times t < 0 by letting v(t) := v(0) ∈ L2(Ω,RN ) and continue
the computation as follows:ˆ τ

0

F
(
u(k)

)
dt ≤

ˆ τ

0

F(v) dt+ 1
hk

¨
Ωτ

(
v − u(k)

)
·
(
v − v(t− hk)

)
dxdt

+ 1
2hk

¨
Ωτ

[∣∣v − u(k)
∣∣2(t− hk)−

∣∣v − u(k)
∣∣2]dxdt

− 1
2hk

¨
Ωτ

∣∣v − v(t− hk)− u(k) + u(k)(t− hk)
∣∣2dxdt

≤
ˆ τ

0

F(v) dt+ 1
hk

¨
Ωτ

(
v − u(k)

)
·
(
v − v(t− hk)

)
dxdt

− 1
2hk

¨
Ω×[τ−hk,τ ]

∣∣v − u(k)
∣∣2dxdt+ 1

2

ˆ
Ω

|v(0)− uo|2dx ,(7.10)

where in the last line we used the fact that v(t) = v(0) for t ≤ 0. This inequality holds for
any τ ∈ (0, T ] and any v ∈ L2(ΩT ,RN ) ∩ Lp(0, T ;u∗ +W 1,p

0 (Ω,RN )).

7.2.3. Energy estimates. Our next goal is to derive energy estimates for the sequence of
approximations u(k), which will allow us to pass to the limit k →∞. In (7.10) we choose
v = u∗ and τ = jhk with j ∈ {1, . . . , k}. This yields
ˆ jhk

0

F
(
u(k)

)
dt+ 1

2

ˆ
Ω

∣∣u(k)(jhk)− u∗
∣∣2dx ≤ T F(u∗) + 1

2

ˆ
Ω

|u∗ − uo|2dx,

and in turn we obtain

(7.11)
ˆ jhk

0

F
(
u(k)

)
dt+ 1

4

ˆ
Ω

∣∣u(k)(jhk)
∣∣2 dx ≤M,

where

M := T F(u∗) +

ˆ
Ω

[
|uo|2 + 3

2 |u∗|
2
]

dx.

This shows

sup
t∈[0,T ]

ˆ
Ω

∣∣u(k)(t)
∣∣2 dx ≤ 4M,



24 V. BÖGELEIN, B. DACOROGNA, F. DUZAAR, P. MARCELLINI, AND C. SCHEVEN

and by assumption (2.2)1 also

(7.12)
¨

ΩT

∣∣Du(k)
∣∣p dxdt ≤ 1

ν

ˆ T

0

F
(
u(k)

)
dt ≤ 1

ν M.

Note that due to Poincaré’s inequality we also have∥∥u(k)
∥∥
Lp(ΩT ,RN )

≤ T‖u∗‖Lp(Ω,RN ) + CP
∥∥D(u(k) − u∗)

∥∥
Lp(ΩT ,RN×n)

≤ CP
[
T‖u∗‖W 1,p(Ω,RN ) +

(
1
νM

) 1
p

]
.

We therefore know that u(k) is uniformly bounded in L∞(0, T ;L2(Ω,RN )) and in
Lp(0, T ;u∗ +W 1,p

0 (Ω,RN )).
Since we do not impose that uo has finite energy, we cannot expect to obtain uni-

form estimates for the difference quotient in time on the whole space-time cylinder ΩT .
However, solutions become more regular immediately after the initial time t = 0. In
fact, in the following we obtain improved energy estimates on cylinders Ω × (ε, T ]
with ε > 0. The argument is as follows. For i ∈ {2, . . . , k}, we consider the func-
tional Fk,i. From the minimizing property of uk,i in (7.9) we obtain with the choice of
ϕ = uk,i−1 ∈ Du∗(F) ∩ L2(Ω,RN ) as comparison function that

F(uk,i) + 1
2hk

ˆ
Ω

|uk,i − uk,i−1|2dx ≤ F(uk,i−1).

Note that the choice i = 1 is not allowed since we do not know that uo has finite energy.
We sum this inequality from i = j1 + 1, . . . , j2 with 1 ≤ j1 < j2 ≤ k. This yields

j2∑
i=j1+1

[
F(uk,i) + 1

2hk

ˆ
Ω

|uk,i − uk,i−1|2dx

]
≤
j2−1∑
i=j1

F(uk,i),

which implies

F(uk,j2) + 1
2hk

j2∑
i=j1+1

ˆ
Ω

|uk,i − uk,i−1|2dx ≤ F(uk,j1)(7.13)

for any 1 ≤ j1 < j2 ≤ k. Since all terms are non-negative this implies in particular that
{1, . . . , k} 3 j 7→ F(uk,j) is decreasing and hence

F(uk,j2) + 1
2hk

j2∑
i=j1+1

ˆ
Ω

|uk,i − uk,i−1|2dx ≤ F(uk,j)

for any j ∈ {1, . . . , j1}. Recalling the definition of u(k), this inequality can be re-written
as

F
(
u(k)(j2hk)

)
+ 1

2

¨
Ω×(j1hk,j2hk)

∣∣∆−hku(k)
∣∣2dxdt ≤ F

(
u(k)(t)

)
,

for any t ∈ [hk, j1hk], where ∆−hk denotes the backwards difference quotient in time. We
now let 0 < ε < τ ≤ T . Then, for k ∈ N with k > 4T

ε , j1 = b εhk c and j2 = d τhk e, we
obtain

F
(
u(k)(τ)

)
+ 1

2

¨
Ω×(ε,τ)

∣∣∆−hku(k)
∣∣2dxdt ≤ F

(
u(k)(t)

)
,

for any t ∈ [hk, ε− hk]. Observe that the left-hand side is independent of t. Taking mean
values with respect to t ∈ [hk, ε− hk] and using (7.12) therefore yields

F
(
u(k)(τ)

)
+ 1

2

¨
Ω×(ε,τ)

∣∣∆−hku(k)
∣∣2dxdt ≤ −

ˆ ε−hk

hk

F
(
u(k)

)
dt ≤ M

ε− 2hk
,(7.14)

for any τ ∈ (ε, T ].
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7.2.4. The limit map. The energy bounds from the last section imply that the sequence
(u(k))k∈N is uniformly bounded in the spaces L∞(0, T ;L2(Ω,RN )) and Lp(0, T ;u∗ +

W 1,p
0 (Ω,RN )). Therefore, there exists a limit map

u ∈ L∞
(
0, T ;L2(Ω,RN )

)
∩ Lp

(
0, T ;u∗ +W 1,p

0 (Ω,RN )
)

and a subsequence K ⊂ N such that{
u(k) ∗⇁ u weakly∗ in L∞

(
0, T ;L2(Ω,RN )

)
,

u(k) ⇁ u weakly in Lp
(
0, T ;W 1,p(Ω,RN )

)
,

(7.15)

as K 3 k → ∞. Next, we define an auxiliary function ũ(k) : Ω × (−hk, T ] → RN as
the linear interpolation of uk,i−1 and uk,i on the interval ((i − 1)hk, ihk]. The precise
definition is

ũ(k)(t) :=
(
i− t

hk

)
uk,i−1 +

(
1− i+ t

hk

)
uk,i for t ∈ ((i−1)hk, ihk] with i∈{1, . . . , k},

and ũ(k)(t) := uo for t ∈ (−hk, 0]. For t ∈ ((i− 1)hk, ihk] we compute

∂tũ
(k) = 1

hk

(
uk,i − uk,i−1

)
∈ L2(Ω,RN )

which due to (7.14) and hypothesis (2.2)1 yields

ν sup
t∈[ε,T ]

∥∥Dũ(k)(t)
∥∥p
Lp(Ω,RN×n)

+ 1
2

¨
Ω×(ε,T )

∣∣∂tũ(k)
∣∣2dxdt ≤ M

ε− 2hk
,(7.16)

for any ε ∈ (0, T ). We now fix ε ∈ (0, T ) and note that ũ(k) satisfies the same energy
bounds as u(k) in L∞(0, T ;L2(Ω,RN )) and Lp(0, T ;W 1,p(Ω,RN )). Therefore, there
exists a limit map

ũ ∈ L∞
(
0, T ;L2(Ω,RN )

)
∩ Lp

(
0, T ;u∗ +W 1,p

0 (Ω,RN )
)

with
ũ ∈ L∞

(
ε, T ;u∗ +W 1,p

0 (Ω,RN )
)

and ∂tũ ∈ L2
(
Ω× (ε, T ],RN

)
,

and a subsequence K1 ⊂ K such that

(7.17)



ũ(k) ⇁ ũ weakly in Lp
(
0, T ;W 1,p(Ω,RN )

)
,

ũ(k) ∗⇁ ũ weakly∗ in L∞
(
0, T ;L2(Ω,RN )

)
,

ũ(k) → ũ strongly in Lmin{2,p}(Ω× (ε, T ],RN ),

∂tũ
(k) ⇁ ∂tũ weakly in L2(Ω× (ε, T ],RN ),

in the limit K1 3 k →∞. Since∣∣(ũ(k) − u(k)
)
(t)
∣∣ ≤ |uk,i − uk,i−1| for t ∈ ((i− 1)hk, ihk],

we conclude from (7.13) and (7.11) for k ∈ N with k > T
ε (which implies hk < ε) that

¨
Ω×(ε,T )

∣∣ũ(k) − u(k)
∣∣2dxdt ≤ hk

k∑
i=2

ˆ
Ω

|uk,i − uk,i−1|2dx ≤ 2h2
k F(uk,1) ≤ 2hkM.

By Hölder’s inequality this implies¨
Ω×(ε,T )

∣∣ũ(k) − u(k)
∣∣dxdt ≤

√
2hkM |ΩT |,

so that together with (7.17)3 we conclude that also u(k) → ũ strongly in L1(Ω× (ε, T ]) as
K1 3 k → ∞. Since ε ∈ (0, T ) was arbitrary, this implies ũ = u and hence we have that
∂tu ∈ L2(Ω× (ε, T ],RN ) for any ε ∈ (0, T ). Moreover, (7.16) yields the bound

ν sup
t∈[ε,T ]

‖Du(t)‖p
Lp(Ω,RN×n)

+ 1
2

¨
Ω×(ε,T )

|∂tu|2dxdt ≤ M

ε
.
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7.2.5. Variational inequality for the limit map. Our aim here is to pass to the limit k →∞
in (7.10). To this aim we consider

v ∈ Lp
(
0, T ;u∗ +W 1,p

0 (Ω,RN )
)

with ∂tv ∈ L2(ΩT ,RN ) and v(0) ∈ L2(Ω,RN ).

We extend v to negative times t < 0 by v(t) := v(0) ∈ L2(Ω,RN ) and integrate inequality
(7.10) with respect to τ over (to, to + δ) ⊂ [0, T ] and divide the result by δ. By Fubini’s
theorem we therefore obtainˆ to

0

F
(
u(k)

)
dt+ 1

2δ

¨
Ω×(to−hk,to+δ)

∣∣v − u(k)
∣∣2dxdt

≤ −
ˆ to+δ

to

[ˆ τ

0

F(v) dt+

¨
Ωτ

∆−hkv ·
(
v − u(k)

)
dxdt

]
dτ

+ 1
2‖v(0)− uo‖2L2(Ω,RN ).

On the right-hand side we can pass to the limit k → ∞ due to the weak convergence
u(k) ⇁ u in L2(ΩT ,RN ) and the fact that ∆−hkv → ∂tv strongly in L2(ΩT ,RN ). For
the first term on the left-hand side we apply Lemma 3.1 and Remark 3.2 and finally for
the second term we use the lower semi-continuity with respect to weak convergence of
u(k) ⇁ u in L2(ΩT ,RN ). Therefore, we obtain in the limit K1 3 k →∞ thatˆ to

0

F(u) dt+ 1
2δ

¨
Ω×(to,to+δ)

|v − u|2dxdt

≤ −
ˆ to+δ

to

[ ˆ τ

0

F(v) dt+

¨
Ωτ

∂tv · (v − u) dxdt

]
dτ + 1

2‖v(0)− uo‖2L2(Ω,RN ).

Passing to the limit δ ↓ 0 this yields the variational inequalityˆ to

0

F(u) dt− 1
2‖(v − u)(to)‖2L2(Ω,RN )

≤
ˆ to

0

F(v) dt+

¨
Ωto

∂tv · (v − u) dxdt+ 1
2‖v(0)− uo‖2L2(Ω,RN )

for any to ∈ (0, T ] and any v ∈ Lp
(
0, T ;u∗ + W 1,p

0 (Ω,RN )
)

with ∂tv ∈ L2(ΩT ,RN )

and v(0) ∈ L2(Ω,RN ). This shows that u satisfies the variational inequality (2.3).

7.2.6. Continuity in time. Since ∂tu ∈ L2(Ω× (ε, T ],RN ) for any ε ∈ (0, T ) we already
know that u ∈ C0((0, T ];L2(Ω,RN )). Therefore, it remains to establish continuity in
t = 0. For ε > 0 we consider the inner parallel set Ωε of Ω and let φ ∈ C∞0 (B1(0),R≥0)
be a standard mollifier. We set φε(x) := ε−nφ(xε ), so that φε ∈ C∞0 (Bε(0),R≥0). We
define the mollification of the initial values uo by

u(ε)
o := u∗ +

(
(uo − u∗)χΩ2ε

)
∗ φε,

where χΩ2ε denotes the characteristic function of Ω2ε. Then, we have u(ε)
o ∈ u∗ +

C∞0 (Ω,RN ) and therefore, assumption (2.2)3 implies F(u
(ε)
o ) < ∞, so that Lemma 3.3

is applicable with vo = u
(ε)
o . Moreover, we have u(ε)

o → uo ∈ L2(Ω,RN ). We test the
variational inequality (2.3) with v = [u]λ,ε, where [u]λ,ε denotes the mollification with
respect to time from (3.2) with the choice vo ≡ u(ε)

o as initial value. This leads to

1
2

∥∥([u]λ,ε − u
)
(τ)
∥∥2

L2(Ω,RN )
+

ˆ τ

0

F(u) dt

≤ 1
2

∥∥u(ε)
o − uo

∥∥2

L2(Ω,RN )
+

ˆ τ

0

F
(
[u]λ,ε

)
dt+

¨
Ωτ

∂t[u]λ,ε ·
(
[u]λ,ε − u

)
dxdt

≤ 1
2

∥∥u(ε)
o − uo

∥∥2

L2(Ω,RN )
+

ˆ τ

0

[
F(u)

]
λ,ε

dt,
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for any τ ∈ (0, T ]. In the last line we used Lemma 3.3 and identity (3.3) for the time
mollification which allowed us to discard the negative last integral. Note that [F(u)]λ,ε is
defined according to (3.2) with the choice vo = F(u

(ε)
o ). In the first term appearing on

the left-hand side we now replace [u]λ,ε by [u]λ, where, according to (3.2), [u]λ is defined
with initial values vo = uo. This leads to∥∥([u]λ − u

)
(τ)
∥∥2

L2(Ω,RN )
≤ 4

ˆ τ

0

[[
F(u)

]
λ,ε
− F(u)

]
dt+ 4

∥∥u(ε)
o − uo

∥∥2

L2(Ω,RN )

= −4λ

ˆ τ

0

∂t
[
F(u)

]
λ,ε

dt+ 4
∥∥u(ε)

o − uo
∥∥2

L2(Ω,RN )

≤ 4λF
(
u(ε)
o

)
+ 4
∥∥u(ε)

o − uo
∥∥2

L2(Ω,RN )
,

for any τ ∈ (0, T ]. In the second last line we used again identity (3.3). Now, we consider
a sequence (εi)i∈N with εi ↓ 0 and choose

λi := min
{
εi,F

(
u(εi)
o

)−2
}
,

so that also λi ↓ 0 as i → ∞. Using the preceding inequality with λi, we obtain for any
i ∈ N that

sup
τ∈(0,T ]

∥∥([u]λi − u
)
(τ)
∥∥2

L2(Ω,RN )
≤ 4
√
λi + 4

∥∥u(εi)
o − uo

∥∥2

L2(Ω,RN )
.

Since the left-hand side converges to zero in the limit i→∞, we conclude that

lim
i→∞

sup
τ∈(0,T ]

∥∥([u]λi − u
)
(τ)
∥∥2

L2(Ω,RN )
= 0.

Keeping in mind that [u]λi ∈ C0
(
[0, T ];L2(Ω,RN )

)
with [u]λi(0) = uo for any i ∈ N,

we deduce from the above convergence that also u ∈ C0
(
[0, T ];L2(Ω,RN )

)
is true and

that u(0) = uo. This proves the desired continuity property with respect to time. We have
thus proved that u is a variational solution of the gradient flow associated to F in the sense
of Definition 2.1 satisfying additionally ∂tu ∈ L2(Ω × (ε, T ],RN ) for any ε ∈ (0, T ).
This finishes the proof of Theorem 7.3. �

7.3. Uniqueness. Here we prove that variational solutions are unique if F is convex. We
emphasize that we do not need to impose its strict convexity.

Theorem 7.4. Assume that p > 1 and that F : W 1,p(Ω,RN ) → [0,∞] is convex and
u∗ satisfies (2.1). Then, there exists at most one variational solution to the gradient flow
associated to F with initial datum uo ∈ L2(Ω,RN ) in the sense of Definition 2.1 if one of
the following conditions is satisfied:

(i) uo = u∗,
(ii) F is finite on u∗ + C∞0 (Ω,RN ).

Proof. We suppose that

u1, u2 ∈ C0
(
[0, T ];L2(Ω,RN )

)
∩ Lp

(
0, T ;u∗ +W 1,p

0 (Ω,RN )
)

are two variational solutions in the sense of Definition 2.1. In the following we abbreviate
w := u1+u2

2 . Adding the variational inequalities (2.3) for u1 and u2 yields

1
2‖(v − u1)(τ)‖2L2(Ω,RN ) + 1

2‖(v − u2)(τ)‖2L2(Ω,RN ) +

ˆ τ

0

[
F(u1) + F(u2)

]
dt

≤ ‖v(0)− uo‖2L2(Ω,RN ) + 2

ˆ τ

0

F(v) dt+ 2

¨
Ωτ

∂tv · (v − w) dxdt(7.18)

for any τ ∈ (0, T ] and any v ∈ Lp(0, T ;u∗+W 1,p
0 (Ω,RN )) with ∂tv ∈ L2(ΩT ,RN ) and

v(0) ∈ L2(Ω,RN ).
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We first prove the uniqueness in the simpler setting (i) when uo = u∗. In this case we
know from Lemma 3.4 that ∂tu1, ∂tu2 ∈ L2(ΩT ,RN ). With the choice v = w and the
convexity of F we find that

1
4‖(u1 − u2)(τ)‖2L2(Ω,RN ) +

ˆ τ

0

[
F(u1) + F(u2)

]
dt

≤ 2

ˆ τ

0

F(w) dt ≤
ˆ τ

0

[
F(u1) + F(u2)

]
dt

for any τ ∈ (0, T ]. This shows that u1 = u2.
If assumption (ii) is satisfied we know that ∂tu1, ∂tu2 ∈ L2(Ω × (δ, T ],RN ) only for

any δ ∈ (0, T ). Therefore, we have to use a mollification argument. For ε > 0 we consider
the inner parallel set Ωε of Ω and let φ ∈ C∞0 (B1(0),R≥0) be a standard mollifier. We
set φε(x) := ε−nφ(xε ), so that φε ∈ C∞0 (Bε(0),R≥0). We define the mollification of the
initial values by

u(ε)
o := u∗ +

(
(uo − u∗)χΩ2ε

)
∗ φε,

where χΩ2ε denotes the characteristic function of Ω2ε. Then, u(ε)
o ∈ u∗+C∞0 (Ω,RN ) and

therefore F(u
(ε)
o ) <∞ by assumption (ii), so that Lemma 3.3 is applicable with vo = u

(ε)
o .

Moreover, u(ε)
o → uo ∈ L2(Ω,RN ) as ε ↓ 0. By [ui]h for i ∈ {1, 2} with h ∈ (0, T ] we

denote the time mollification of ui as in (3.2) with initial value vo ≡ u
(ε)
o . Note that

[ui]h ∈ Lp(0, T ;u∗ + W 1,p
0 (Ω,RN )) and ∂t[ui]h ∈ L2(ΩT ,RN ), cf. [8, Appendix B].

We now choose v = 1
2

(
[u1]h + [u2]h

)
as comparison map in (7.18). Using (3.3) we obtain

2∂tv · (v − w) = ∂tv · (v − u1) + ∂tv · (v − u2) = − 1
2h

∣∣[u1]h − u1 + [u2]h − u2

∣∣2 ≤ 0

and therefore

1
2‖(v − u1)(τ)‖2L2(Ω,RN ) + 1

2‖(v − u2)(τ)‖2L2(Ω,RN ) +

ˆ τ

0

[
F(u1) + F(u2)

]
dt

≤
∥∥u(ε)

o − uo
∥∥2

L2(Ω,RN )
+ 2

ˆ τ

0

F(v) dt

≤
∥∥u(ε)

o − uo
∥∥2

L2(Ω,RN )
+

ˆ τ

0

[
F
(
[u1]h

)
+ F

(
[u2]h

)]
dt.

From Lemma 3.3 we know that

lim
h↓0

ˆ τ

0

F
(
[ui]h

)
dt =

ˆ τ

0

F(ui) dt.

Therefore, in the limit h ↓ 0 the last inequality simplifies to∥∥(u1 − u2)(τ)
∥∥2

L2(Ω,RN )
≤ 4
∥∥u(ε)

o − uo
∥∥2

L2(Ω,RN )
,

for any τ ∈ (0, T ]. In the preceding inequality we let ε ↓ 0. This proves the desired claim,
that u1 = u2 a.e. on ΩT .

�

7.4. Existence of weak solutions. The passage from the minimality condition (2.3) to a
weak solution of the associated parabolic system

(7.19) ∂tu− div
(
Dξf(x, u,Du)

)
+Duf(x, u,Du) = 0

is possible under certain additional assumptions on the integrand f . We assume that
f : Ω × RN × RNn → R is a Carathéodory-function that for a.e. x ∈ Ω is continu-
ously differentiable with respect to (u, ξ), whose derivatives satisfy the following growth
conditions

(7.20) |Dξf(x, u, ξ)|+ |Duf(x, u, ξ)| ≤ c
[
1 + |u|q−1 + |ξ|p−1

]
,
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for some p, q > 1 and c > 0. Note that if f is convex with respect to (u, ξ) and

|f(x, u, ξ)| ≤ L
(
1 + |u|q + |ξ|p

)
,

then (7.20) is automatically satisfied, cf. [34, Lemma 2.1].
We consider a variational solution with u ∈ Lq(ΩT ,RN ). In the variational inequality

(2.3) we use the testing function v ≡ u + sϕ, with |s| ∈ (0, 1) and ϕ ∈ C∞0 (ΩT ,RN ).
Here we recall that the variational solution obtained in Theorem 2.3 satisfies u ∈
C0([0, T ];L2(Ω,RN )) ∩ Lp(0, T ;u∗ + W 1,p

0 (Ω,RN )) and ∂tu ∈ L2(Ω × (ε, T ),RN )
for any ε > 0. The resulting inequality is divided by s. Afterwards, we let s → 0, which
amounts in taking the derivative of the mapping

(−1, 1) 3 s 7→
¨

ΩT

f(x, u+ sϕ,Du+ sDϕ) dxdt

in s = 0. The result is that¨
ΩT

[
u · ∂tϕ−Dξf(x, u,Du) ·Dϕ−Duf(x, u,Du) · ϕ

]
dxdt = 0(7.21)

holds true for any ϕ ∈ C∞0 (ΩT ,RN ). Consequently, the variational solution solves the as-
sociated parabolic system and therefore is a global solution to the Cauchy-Dirichlet prob-
lem associated to (7.19). In order to guarantee the existence of variational solutions with
u ∈ Lq(ΩT ,RN ), we strengthen assumption (2.2)1 to

(7.22) F[u] ≥ ν
(
‖Du‖p

Lp(Ω,RN )
+ ‖u‖q

Lq(Ω,RN )

)
− L

for all u ∈ u∗ + W 1,p
0 (Ω,RN ) ∩ Lq(Ω,RN ), where ν, L > 0 are given constants. We

note that due to Poincaré’s inequality, assumption (2.2)1 implies (7.22) with q = p and a
smaller constant ν > 0. Examples of integral functionals satisfying (7.22) with p = 2 and
q > 2 are given in (5.5).

Our existence result from Theorem 7.3 continues to hold under assumption (7.22) in-
stead of (2.2)1 because we may apply Theorem 7.3 to F + L. However, the assumption
(7.22) ensures that the variational solutions constructed in Theorem 7.3 additionally satisfy
u ∈ Lq(ΩT ,RN ). Therefore, the following result holds.

Theorem 7.5. Let F be defined by (1.1) with a Carathéodory-function f : Ω × RN ×
RNn → R that is continuously differentiable with respect to (u, ξ) for a.e. x ∈ Ω. Suppose
that the lateral boundary values u∗ satisfy (2.1), that (7.20) holds true for some p, q > 1,
and that F is convex on L2(Ω,RN ) ∩ u∗ + W 1,p

0 (Ω,RN ) and fulfills (2.2)2,3 and (7.22).
Then, for any initial datum uo ∈ L2(Ω,RN ) there exists at least one weak solution to
the parabolic Cauchy-Dirichlet problem associated to (7.19), and this solution satisfies
u ∈ Lq(ΩT ,RN ).

Therefore, under the growth assumption (7.20), every variational solution is a weak
solution, too. Also a reverse result holds.

Theorem 7.6. Under the assumptions of Theorem 7.5 any weak solution u ∈
C0([0, T ];L2(Ω,RN )) ∩ Lp(0, T ;u∗ +W 1,p

0 (Ω,RN )) to the parabolic Cauchy-Dirichlet
problem associated to (7.19) that satisfies u ∈ Lq(ΩT ,RN ) is a variational solution in the
sense of Definition 2.1.

Proof. Let u ∈ C0([0, T ];L2(Ω,RN )) ∩ Lp(0, T ;u∗ + W 1,p
0 (Ω,RN )) be a weak so-

lution of the parabolic Cauchy-Dirichlet problem associated to (7.19). We consider
ϕ ∈ C∞0 (ΩT ,RN ). For t ∈ [0, T ] and s ∈ R we define

g(s, t) := F
(
u(t) + sϕ(t)

)
=

ˆ
Ω

f
(
x, u(x, t) + sϕ(x, t), Du(x, t) + sDϕ(x, t)

)
dx.
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By the convexity of F we know that for a.e. t ∈ [0, T ] the function s 7→ g(s, t) is convex.
Therefore, we have

(7.23) g(1, t) ≥ g(0, t) + g′(0, t),

for a.e. t ∈ [0, T ] if g′(0, t) exists. In fact, g′(0, t) exists due to the growth assumptions in
(7.20) and with the same computations as before we have

g′(0, t) =

ˆ
Ω

[
Duf(x, u,Du) · ϕ+Dξf(x, u,Du) ·Dϕ

]
dx,

for a.e. t ∈ [0, T ]. Integrating both sides of (7.23) with respect to t ∈ [0, T ], we obtain
ˆ T

0

F(u+ϕ) dt ≥
ˆ T

0

F(u) dt+

¨
ΩT

[
Duf(x, u,Du) ·ϕ+Dξf(x, u,Du) ·Dϕ

]
dxdt.

Since u is a weak solution we get from the weak form (7.21) thatˆ T

0

F(u+ ϕ) dt ≥
ˆ T

0

F(u) dt+

¨
ΩT

u · ∂tϕdxdt.

This implies that u is a variational solution. In fact, with v as in Definition 2.1 we choose
ϕ = χε(t)(v − u), where χε : [0, T ] → [0, 1] is a cut-off function in time with χε(0) =
0 = χε(T ) and χε → χ[0,τ ] as ε ↓ 0, for τ ∈ [0, T ]. Note that due to the differential
equation (7.19) and the growth conditions (7.20), the time derivative ∂tu is a sum of a term
in Lp

′
(0, T ;W−1,p′(Ω,RN )) and one in Lq

′
(ΩT ,RN ). The passage to the limit ε ↓ 0 can

be realized by the convexity of F, since 0 ≤ χε ≤ 1 andˆ τ

0

[
χεF(v) + (1− χε)F(u)

]
dt

≥
ˆ τ

0

F
(
u+ χε(v − u)

)
dt

≥
ˆ τ

0

F(u) dt+

¨
Ωτ

u · ∂t
(
χε(v − u)

)
dxdt

=

ˆ τ

0

F(u) dt−
¨

Ωτ

[
1
2χ
′
ε|v − u|2 + χε∂tv · (v − u)

]
dxdt,

for any τ ∈ [0, T ]. At this point the variational inequality (2.3) follows as ε ↓ 0. �
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[39] S. Müller, M.O. Rieger, V. Šverǎk. Parabolic systems with nowhere smooth solutions. Arch. Ration. Mech.

Anal. 177(1):1–20, 2005.
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VERENA BÖGELEIN, FACHBEREICH MATHEMATIK, UNIVERSITÄT SALZBURG, HELLBRUNNER STR. 34,
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